Informatics and Applications
2014, Volume 8, Issue 3, pp 53-69
MONITORING REMOTE SERVER ACCESSIBILITY: THE OPTIMAL FILTERING APPROACH
Abstract
The online monitoring problem of a remote server, accessible via the http protocol, is formulated in the terms of optimal filtering. The unobservable server state is treated as a finite-dimensional Markov jump process, meanwhile the observation is supposed to be a multivariate point process with a finite set of possible values. The key point of the investigated observation system is that the random intensity of observations is a linear function of the unobservable Markov state. It is proved that the optimal filtering estimate is a solution to some closed finite system of recursive formulae and ordinary linear differential equations with a random right-hand side. The applicability of the obtained theoretical results is illustrated by an example of monitoring accessibility of the queueing system "communication channel - database server." The unobservable state of this system consists of three possible values (no connection, low workload, high workload), meanwhile the possible observations belong to the set of two possible values (answer to the query, error message). The conclusion of the paper contains possible prospectives for the further research.
[+] References (20)
- Gnedenko, B.V., and I. N. Kovalenko. 1989. Introduction to queueing theory. Boston: Birkhauser. 314 p.
- Kalashnikov, V. V. 1990. Mathematical methods for con-struction of queueing models. N.Y.: Springer-Verlag. 431 p.
- Bremaud, P. 1979. Optimal thinning of a point process. SIAM J. Contr. Optim. 17(2):222-230. doi: 10.1137/0317017.
- Miller, B.M., K. E. Avrachenkov, K. V. Stepanyan, and G. B. Miller. 2005. Flowcontrolas stochastic optimal control problem with incomplete information. Problems Information Transmission 41(2):150-170. doi: 10.1007/s11122- 005-0020-8.
- Shen, B., Z. Wang, and H. Shu. 2013. Nonlinear stochastic systems with incomplete information: Filtering and control. N.Y.: Springer Verlag. 248 p.
- Anagnostopoulos, A., A. Kirsch, andE. Upfal. 2005. Load balancing in arbitrary network topologies with stochastic adversarial input. SIAM J. Comput. 17(3)616-639. doi: 10.1137/S0097539703437831.
- Altman, E., U. Ayesta, and B. Prabhu. 2011. Load balancing in processor sharing systems. Telecommun. Syst. 47(1- 2):35-48. doi: 10.4108/ICST.VALUETOOLS2008.4462.
- Bosov, A.V. 2009. Modeling and optimization of functioning of the Information Web Portal. Programming Computer Software 35(6):340-350 doi: 10.1134/S0361768809060048.
- Bosov, A. V. 2012. Zadachi analiza i optimizatsii dlya modelipol'zovatel'skoyaktivnosti. Chast' 1. Analiziprog- nozirovanie [Analysis and optimization problems for some users activity model. Part 1. Analysis and prediction]. Informatika i ee Primeneniya - Inform. Appl. 5(4):40-52.
- Olshefski, D., J. Nieh, and D. Agrawal. 2004. Using CERTES to infer client response time at the web server. ACM Trans. Comput. Syst. 22(1):49-93. doi: 10.1145/511334.511355.
- Ozsu, M.T., and P. Valduriez. 2011. Principles of dis-tributed database systems. N.Y.: Springer-Verlag. 845 p.
- Elliott, R. J., L. Aggoun, and J. B. Moore. 1994. Hidden Markov models: Estimation and control. N.Y.: Springer- Verlag. 382 p.
- Liptser, R. Sh., and A. N. Shiryayev. 1989. Theory of martingales. N.Y.: Springer-Verlag. 812 p.
- Jacod, J., and A. Shiryayev. 2003. Limit theorems for stochastic processes. N.Y.: Springer-Verlag. 664 p.
- Elliott, R. J. 1982. Stochastic calculus and applications. N.Y.: Springer-Verlag. 302 p.
- Wong, E., and B. Hajek. 1985. Stochastic processes in engineering systems. N.Y.: Springer-Verlag. 361 p.
- Borisov, A. V., B.M. Miller, and K. V. Semenikhin. 2014 (in press). Filtering of Markov jump process given the observations the observations of multivariate point process. Autom. Rem. Contr.
- Yushkevich, A. A. 1978. Controlled Markov models with countable state space and continuous time. Theory Prob- abl. Appl. 22(2):215-235. doi: 10.1137/1122029.
- Kalman, R. E., and R. S. Bucy. 1960. New results in linear filtering and prediction theory. Trans. ASME. J. Basic Eng. 83D(1):95-108.
- Cvitanic, J., R. Liptser, and B. Rozovskii. 2006. Afilter- ing approach to tracking volatility from prices observed at random times. Ann. Appl. Probab. 16:1633-1652. doi: 10.1214/105051606000000222.
[+]
About this article
Title
MONITORING REMOTE SERVER ACCESSIBILITY: THE OPTIMAL FILTERING APPROACH
Journal
Informatics and Applications
2014, Volume 8, Issue 3, pp 53-69
Cover Date
2014-03-31
DOI
10.14357/19922264140307
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
Markov models; optimal filtering; stochastic jump processes; conditional probability distribution; queueing theory
Authors
A. V. Borisov ,
Author Affiliations
Institute of Informatics Problems, Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian
Federation
Department of Probability Theory, School of Applied Mathematics and Physics, Moscow Aviation Institute, 4 Volokolamskoe Shosse, GSP-3, A-80, Moscow 125993, Russian Federation
|