Informatics and Applications
2014, Volume 8, Issue 3, pp 19-27
ON THE BOUNDS OF THE RATE OF CONVERGENCE AND
STABILITY FOR SOME QUEUEING MODELS
- A. I. Zeifman
- A. V. Korotysheva
- K. M. Kiseleva
- V. Yu. Korolev
- S. Ya. Shorgin
Abstract
A generalization of the famous Erlang loss system has been considered, namely, a class of Markovian queueing systems with possible simultaneous arrivals and group services has been studied. Necessary and sufficient conditions of weak ergodicity have been obtained for the respective queue-length process and explicit bounds on
the rate of convergence and stability have been found. The research is based on the general approach developed in the authors' previous studies for nonhomogeneous Markov systems with batch arrival and service requirements. Also, specific models with periodic intensities and different maximum size of number of arrival customers are discussed. The main limiting characteristics of these models have been computed and the effect of the maximum size of the group of arrival customers on the limiting characteristics of the queue has been studied.
[+] References (18)
- Erlang, A. K. 1917. L0sning af nogle Problemer fra Sandsynlighedsregningen af Betydning forde automatiske Telefoncentraler. Elektroteknikeren 13:5-13.
- Gnedenko, B.V., and I. P Makarov. 1971. Svoystva re- sheniy zadachi s poteryami v sluchae periodicheskikh intensivnostey [Properties of a problem with losses in the case of periodic intensities]. Diff. Uravneniya [Differential Equations] 7:1696-1698.
- Zeifman, A. I. 1989. Properties of a system with losses in the case of variable rates. Autom. Rem. Contr. 50:82-87.
- Kijima, M. 1990. On the largest negative eigenvalue of the infinitesimal generator associated with M/M/n/n queues. Oper. Res. Lett. 9:59-64. doi: 10.1016/0167- 6377(90)90041-3.
- Massey, WA, and W Whitt. 1994. On analysis of the modified offered-load approximation for the nonstation- ary Erlang loss model. Ann. Appl. Probab. 4:1145-1160. doi:10.1214/aoap/1177004908.
- Fricker, C., P Robert, and D. Tibi. 1999. On the rate of convergence of Erlang's model. J.Appl. Probab. 36:1167-1184. doi: 10.1239/jap/1032374763.
- Voit, M. 2000. A note of the rate of convergence to equi-librium for Erlang's model in the subcritical case. J. Appl. Probab. 37:918-923. doi: 10.1239/jap/1014842847.
- Granovsky, B. L., and A. I. Zeifman. 2004. Nonstationary queues: Estimation of the rate of convergence. Queueing Syst. 46:363-388. doi: 46: 363-388.0.1023/ B:QUES.0000027991.19758.b4.
- Van Doorn, E. A., and A. I. Zeifman. 2009. On the speed of convergence to stationarity of the Erlang loss system. Queueing Syst. 63:241-252. doi: 10.1007/s11134- 009-9134-9.
- Zeifman, A. I. 2009. On the nonstationary Erlang loss model. Autom. Rem. Contr. 70:2003-2012. doi: 10.1134/S000511790912008X.
- Zeifman, A., A. Korotysheva, Ya. Satin, G. Shilova, and T. Panfilova. 2013. On a queueing model with group services. Modern probabilistic methods for analysis of telecommunication network. Eds. A. Dudin, V. Kli- menok, G. Tsarenkov, and S. Dudin. Communications in computer and information science ser. 356:198-205. doi: 10.1007/978-3-642-35980-4_22.
- Zeifman, A., A. Korotysheva, G. Shilova, and V. Korolev
2014. On perturbation bounds for a queueing model with group services. Preprint.
- Zeifman, A., A. Korotysheva, Y. Satin, V. Korolev, and V. Bening. 2014. Perturbation bounds and truncations for a class of Markovian queues. Queueing Syst. 76:205-221. doi: 10.1007/s11134-013-9388-0.
- Zeifman, A. I., and V. Yu. Korolev 2014. On perturbation bounds for continuous-time Markov chains. Stat. Probab. Lett. 88:66-72. doi: 10.1016/j.spl.2014.01.031.
- Zeifman, A.I., and D. Isaacson. 1994. On strong er- godicity for nonhomogeneous continuous-time Markov chains. Stoch. Proc.Appl. 50:263-273. doi: 10.1016/0304- 4149(94)90123-6.
- Zeifman, A. I. 1995. Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes. Stoch. Proc.Appl. 59:157-173. doi: 10.1016/0304- 4149(95)00028-6.
- Zeifman, A. I., S. Leorato, E. Orsingher, Y. Satin, and G. Shilova. 2006. Some universal limits for nonhomogeneous birth and death processes. Queueing Syst. 52:139
151. doi: 10.1007/s11134-006-4353-9.
- Zeifman, A.I., V.Yu. Korolev, A.V. Korotysheva,
and S.Ya. Shorgin. 2014. Obshchie otsenki ustoychivosti dlya
nestatsionarnykh markovskikh tsepey s nepre- ryvnym vremenem [General
bounds for nonstation- ary continuous-time Markov]. Informatika i ee
Primeneniya - Inform. Appl. 8(1):106-117. doi: 10.14357/ 19922264140111.
[+]
About this article
Title
ON THE BOUNDS OF THE RATE OF CONVERGENCE AND STABILITY FOR SOME QUEUEING MODELS
Journal
Informatics and Applications
2014, Volume 8, Issue 3, pp
19-27
Cover Date
2014-03-31
DOI
10.14357/19922264140303
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
nonstationary Markovian queue; Erlang model; batch arrivals and group services; ergodicity; stability; bounds
Authors
A. I. Zeifman , , ,
A. V. Korotysheva , K. M. Kiseleva ,
V. Yu. Korolev , , and S. Ya. Shorgin
Author Affiliations
Institute of Informatics Problems, Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian
Federation
Vologda State University, 15 Lenin Str., Vologda 160000, Russian Federation
Institute of Socio-Economic Development of Territories, Russian Academy of Sciences, 56A Gorkogo Str., Vologda 160014, Russian Federation
Department of
Mathematical Statistics, Faculty of Computational Mathematics and
Cybernetics, M.V. Lomonosov Moscow State University, 1-52 Leninskiye Gory,
GSP-1, Moscow 119991, Russian Federation |