Informatics and Applications
2014, Volume 8, Issue 1, pp 118-126
ON APPROXIMATION AND CONVERGENCE OF ONE-DIMENSIONAL PARABOLIC INTEGRODIFFERENTIAL POLYNOMIALS AND SPLINES
- V.I. Kireev
- M.M. Gershkovich
- T.K. Biryukova
Abstract
The methods for approximation of functions with one-dimensional (1D) integrodifferential polynomials
of the 2nd degree and derived conservative parabolic integrodifferential splines are considered. In majority of
applied computational tasks, accuracy of source data does not exceed precision of approximation by parabolic
polynomials and splines. The nodes of conventional parabolic splines, based on differential matching conditions
with approximated function (further named as differential splines), are shifted relatively to interpolation nodes in
order to provide stability of approximation process. The shift between spline and approximation nodes complicates
computational algorithms drastically. Additionally, traditional differential splines are not conservative, i. e., they do
notmaintain integral characteristics of approximated functions. The novel integrodifferential parabolic splines that
use integral deviation as criteria for matching a spline with a source function are presented. These splines are stable
if spline nodes coincide with nodes of approximated functions and conservative with respect to sustaining area
under curves. The theorems on approximation of mathematical functions with 1D integrodifferential parabolic
polynomials and convergence of parabolic integrodifferential splines are proved. It is suggested to apply the
proposed integrodifferential splines for development of mathematical data processing models for large area spread
information systems.
[+] References (9)
- Gershkovich, M.M., T.K. Biryukova, and V. I. Sinitsyn.
2012. Problemy identifikatsii i raspoznavaniya informatsionnykh
ob”ektov pri sozdanii raspredelennykh
informatsionno-telekommunikatsionnykh sistem [Problems
of identification and recognition of information’s
objects in development of information-telecommunication
systems]. Optiko-elektronnye pribory i ustroystva v sistemakh
raspoznavaniya obrazov, obrabotki izobrazheniy i
simvol’noy informatsii. Raspoznavanie 2012: Sbornik Materialov
X Mezhdunarodnoy Nauchno-Tekhnicheskoy Konferentsii.
Kursk: Izd-vo Jugo-Zap.Gos. Un-ta. 24–26.
- Zav’jalov, Ju. S. , B. I. Kvasov, and V. L. Miroshnichenko.
1980. Metody splayn-funktsiy [Methods of spline functions].
Novosibirsk: Nauka, 1980. 350 p.
- Zav’jalov, Ju. S., V.A. Leus, and V.A. Skorospelov. 1985.
Splayny v inzhenernoy geometrii [Splines in engineering geometry].
Moscow:Mashinostroenie. 224 p.
- Kvasov, B. I. 2006. Metody izogeometricheskoy approksimatsii
splaynami [Methods of izogeometric spline approximation].
Moscow: Fizmatlit. 360 p.
- Stechkin, S.B., and Ju.N. Subbotin. 1976. Splayny v vychislitel’noy
matematike [Splines in computing mathematics].
Moscow: Nauka. 248 p.
- Kireev, V. I., and T.K. Biryukova. 1955. Integrodifferentsial’nye
konservativnye splayny i ikh primenenie v interpolyatsii,
chislennom differentsirovanii i integrirovanii
[Integrodifferencial splines and their applications in interpolation,
numerical differentiation and quadrature]. Vychislitel’nye
Tekhnologii 4(16):233–244.
- Biryukova, T.K., M.M. Gershkovich, and V. I. Kireev.
2012. Integro-differentsial’nye mnogochleny i splayny
proizvol’noy chetnoy stepeni v zadachakh analiza
parametrov funktsionirovaniya raspredelennykh informatsionnykh
system [Integrodifferential polynomials and
splines of arbitrary even degree in analysis of parameters
of functioning of spread information systems]. Sistemy
Komp’yuternoy matematiki i ikh prilozheniya (SKMP-2012):
Materialy XIII Mezhdunarodnoy Nauchnoy Konferentsii,
posvyashchennoy 75-letiyu Professora E. I. Zverovicha.
Smolensk: Izd-vo SmolGU. 13:67–72.
- Kireev, V. I., and A. V. Panteleev. 2008. Chislennye metody v
primerakh i zadachakh [Numerical methods in examples and
problems]. Moscow: Vysshaya shkola. 480 p.
- Volkov, E.A. 1982. Chislennyemetody [Computational methods].
Moscow: Nauka. 254 p.
[+] About this article
Title
ON APPROXIMATION AND CONVERGENCE OF ONE-DIMENSIONAL PARABOLIC INTEGRODIFFERENTIAL POLYNOMIALS AND SPLINES
Journal
Informatics and Applications
2014, Volume 8, Issue 1, pp 118-126
Cover Date
2014-03-31
DOI
10.14357/19922264140112
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
spline; polynomial; integrodifferential; integrodifferential; approximation; interpolation; smoothing;
estimation of errors; convergence theorem; mathematical data processing model
Authors
V. I. Kireev , M.M. Gershkovich , and T.K. Biryukova
Author Affiliations
Moscow State Mining University, 6 Leninskiy Prosp.,Moscow 119991, Russian Federation
Institute of Informatics Problems, Russian Academy of Sciences, 44-2 Vavilov Str.,Moscow 119333, Russian Federation
|