Informatics and Applications
2014, Volume 8, Issue 1, pp 106-117
GENERAL BOUNDS FOR NONSTATIONARY CONTINUOUS-TIME MARKOV CHAINS
- A.I. Zeifman
- V.Yu. Korolev
- A.V. Korotysheva
- S.Ya. Shorgin
Abstract
A general approach for obtaining perturbation bounds of nonstationary continuous-time Markov chains
is considered. The suggested approach deals with a special weighted norms related to total variation. The method
is based on the notion of a logarithmic norm of a linear operator function and respective bounds for the Cauchy
operator of a differential equation. Special transformations of the reduced intensity matrix of the process are
applied. The statements are proved which provide estimates of perturbation of probability characteristics for the case
of absence of ergodicity in uniform operator topology. Birth–death–catastrophe queueing models and queueing
systems with batch arrivals and group services are also considered in the paper. Some classes of such systems are
studied, and bounds of perturbations are obtained. Particularly, such bounds are given for the Mt/Mt/S queueing
system with possible catastrophes and a simplemodel of a queueing system with batch arrivals and group services is
analyzed. Moreover, approximations of limiting characteristics are considered for the queueing model.
[+] References (49)
- Stoyan, D. 1977. Qualitative Eigenschaften und
Absch.atzungen stochastischer Modelle. Berlin:
Akademie-Verlag. 198 p.
- Zolotarev, V.M. 1978. Quantitative estimates for the continuity
property of queueing systems of typeG/G/..Theory
Probab. Appl. 22(4):679–691. doi: 10.1137/1122083.
- Kalashnikov, V. V. 1978. Kachestvennyy analiz slozhnykh
sistem metodom probnykh funktsiy [Qualitative analysis
of complex systems behavior by test functions method].
Moscow: Nauka. 248 p.
- Kalashnikov, V. V., and V.M. Zolotarev, eds. 1983. Stability
problems for stochastic models. Lecture notes in
mathematics. N.Y.: Springer Verlag. Vol. 983. 295 p.
- Kalashnikov, V. V., V. Penkov, and V.M. Zolotarev, eds.
1987. Stability problems for stochastic models. Lecture
notes in mathematics. N.Y.: Springer Verlag. Vol. 1233.
224 p.
- Kalashnikov, V. V., and V.M. Zolotarev, eds. 1989. Stability
problems for stochastic models. Lecture notes in
mathematics. N.Y.: Springer Verlag. Vol. 1412. 380 p.
- Zolotarev, V.M., V.M. Kruglov, and V. Yu. Korolev, eds.
1994. Stability problems for stochastic models. 15th Perm
Seminar Proceedings. Perm, Russia. 312 p.
- Kalashnikov, V. V., and V.M. Zolotarev, eds. 1993. Stability
problems for stochastic models. Lecture notes in
mathematics. N.Y.: Springer Verlag. Vol. 1546. 229 p.
- Gnedenko, B. V., and V. Yu. Korolev. 1996. Random summation:
Limit theorems and applications. Boca Raton:
CRC Press. 267 p.
- Kartashov, N. V. 1981. Sil’no ustoychivye tsepi Markova
[Strong stable Markov chains]. Problemy ustoychivosti
stokhasticheskikh modeley: Trudy seminara [“Stability
Problems for Stochastic Models” Seminar Proceedings].
Moscow: VNIISI. 54–59.
- Kartashov, N. V. 1986. Inequalities in theorems of ergodicity
and stability for Markov chains with common
phase space. I. Theory Probab. Appl. 30(2):247–259. doi:
10.1137/1122083.
- Zeifman, A. I. 1985. Stability for contionuous-time nonhomogeneousMarkov
chains. Lecture notes in mathematics.
N.Y.: Springer Verlag. 1155:401–414.
- Aldous, D. J., and J. Fill. Reversible Markov chains
and random walks on graphs. Ch. 8. Available
at: http://www.stat.berkeley.edu/users/aldous/RWG/
book.html (accessed December 25, 2013).
- Diaconis, P., and D. Stroock. 1991. Geometric bounds for
eigenvalues of Markov chains. Ann. Appl. Probab. 1:36–61.
doi: 10.1214/aoap/1177005980.
- Mitrophanov, A.Yu. 2003. Stability and exponential convergence
of continuous-time Markov chains. J. Appl.
Probab. 40:970–979. doi: 10.1239/jap/1067436094.
- Mitrophanov, A. Yu. 2004. The spectral gap and perturbation
bounds for reversible continuous-time Markov
chains. J. Appl. Probab. 41:1219–1222. doi: 10.1239/
jap/1101840568.
- Mitrophanov, A. Yu. 2005. Ergodicity coefficient and perturbation
bounds for continuous-time Markov chains.
Math. Inequal. Appl. 8:159–168. doi: 10.7153/mia-08-15.
- Mitrophanov, A. Yu. 2006. Stability estimates for finite
homogeneous continuous-time Markov chains.
Theory Probab. Appl. 50(2):319–326. doi: 10.1137/
S0040585X97981718.
- Kartashov, N. V. 1996. Strong stable Markov chains.
Utrecht, Kiev: VSP, TBiMC. 138 p.
- Altman, E., K. Avrachenkov, and R. Nunez-Queija. 2004.
Perturbation analysis for denumerableMarkov chainswith
application to queueing models. Adv. Appl. Probab. 36:
839–853. doi: 10.1239/aap/1093962237.
- Mouhoubi, Z., and D. Aissani. 2010. New perturbation
bounds for denumerable Markov chains. Linear
Algebra and Its Applications. 432:1627–1649. doi:
10.1016/j.laa.2009.11.020.
- Ferre, D., L. Herve, and J. Ledoux. 2013. Regular perturbation
of V-geometrically ergodicMarkov chains. J. Appl.
Probab. 50:184–194. doi: 10.1239/jap/1363784432.
- Meyn, S. P., and R. L. Tweedie. 1994. Computable
bounds for geometric convergence rates of Markov
chains. Ann. Appl. Probab. 4: 981–1012. doi:10.1214/
aoap/1177004900.
- Yuanyuan, L. 2012. Perturbation bounds for the stationary
distributions ofMarkov chains. SIAMJ.Matrix Anal. Appl.
33:1057–1074. doi: 10.1137/110838753.
- Gnedenko, D.B. 1972. On a generalization of Erlang
formulae. Zastosow. Mat. 12:239–242.
- Gnedenko, B., and A. Soloviev. 1973. On the conditions
of the existence of final probabilities for aMarkov process.
Math. Oper. Stat. 4:379–390.
- Massey, W.A., and W. Whitt. 1998. Uniform acceleration
expansions for Markov chains with time-varying
rates. Ann. Appl. Probab. 8:1130–1155. doi: 10.1214/
aoap/1028903375.
- Gnedenko,B. V., and I. P. Makarov. 1971. Svoystva resheniy
zadachi s poteryami v sluchae periodicheskikh intensivnostey
[Properties of the solution to the loss problem
for periodic rates]. Differentsial’nye Uravneniya [Differential
Equations] 7:1696–1698.
- Zeifman, A. I. 1991. Qualitative properties of inhomogeneous
birth and death processes. J. Math. Sci. 57:3217–
3224. doi: 10.1007/BF01099019.
- Zeifman, A. I. 1989. Properties of a system with losses in
the case of variable rates. Autom. Rem. Contr. 50:82–87.
- Zeifman, A. I. 1991. Some estimates of the rate of convergence
for birth and death processes. J. Appl. Probab.
28:268–277.
- Zeifman, A. I. 1995. Upper and lower bounds on the rate
of convergence for nonhomogeneous birth and death processes.
Stoch. Proc. Appl. 59:157–173. doi: 10.1016/0304-
4149(95)00028-6.
- Granovsky, B. L., and A. I. Zeifman. 2004. Nonstationary
queues: Estimation of the rate of convergence.
Queueing Syst. 46:363–388. doi: 10.1023/B:QUES.
0000027991.19758.b4.
- Zeifman, A. I., V. E. Bening, and I.A. Sokolov. 2008.
Markovskie tsepi i modeli s nepreryvnym vremenem
[Continuous-time Markov chains and models]. Moscow:
Elex-KM. 168 p.
- Van Doorn, E.A., A. I. Zeifman, and T.L. Panfilova. 2010.
Bounds and asymptotics for the rate of convergence of
birth–death processes. Theory Probab. Appl. 54:97–113.
doi: 10.1137/S0040585X97984097.
- Zeifman, A. I., and D. Isaacson. 1994. On strong ergodicity
for nonhomogeneous continuous-time Markov
chains. Stoch. Proc. Appl. 50:263–273. doi: 10.1016/0304-
4149(94)90123-6.
- Zeifman, A. I. 1998. Stability of birth and death processes.
J. Math. Sci. 91:3023–3031. doi: 10.1007/BF02432876.
- Zeifman, A. I., and A. Korotysheva. 2012. Perturbation
bounds forMt/Mt/N queue with catastrophes. Stochastic
models 28:49–62. doi: 10.1080/15326349.2011.614900.
- Zeifman, A., V. Korolev, A. Korotysheva, Y. Satin, and
V. Bening. 2014 (in press). Perturbation bounds and truncations
for a class ofMarkovian queues. Queueing Syst.
- Zeifman, A. I., S. Leorato, E. Orsingher, Y. Satin, and
G. Shilova. 2006. Some universal limits for nonhomogeneous
birth and death processes. Queueing Syst. 52:139–
151. doi: 10.1007/s11134-006-4353-9.
- Daleckij, Ju, L. and M.G. Krein. 1974. Stability of solutions
of differential equations in Banach space. Am.Math.
Soc. Transl. 43. 386 p.
- Zeifman, A. I., Ya. Satin, and T. Panfilova. 2013. Limiting
characteristics for finite birth–death–catastrophe
processes. Math. Biosci. 245:96–102. doi: 10.1016/
j.mbs.2013.02.009.
- Thorne, J. L., H. Kishino, and J. Felsenstein. 1991. An
evolutionary model for maximum-likelihood alignment of
DNA sequences. J. Mol. Evol. 33:114–124. doi: 10.1007/
BF02193625.
- Mitrophanov, A. Yu., and M. Borodovsky. 2007. Convergence
rate estimation for the TKF91 model of biological
sequence length evolution. Math. Biosci. 209:470–485.
doi: 10.1016/j.mbs.2007.02.011.
- Satin, Ya.A., A. I. Zeifman, A. V. Korotysheva, and
S. Ya. Shorgin. 2011. Ob odnom klasse markovskikh sistem
obsluzhivaniya [On a class of Markovian queues].
Informatika i ee Primeneniya — Inform. Appl. 5(4):18–24.
- Satin, Ya.A., A. I. Zeifman, A. V. Korotysheva. 2013.
On the rate of convergence and truncations for a class
of Markovian queueing systems. Theory Probab. Appl.
57:529–539. doi: 10.1137/S0040585X97986151.
- Zeifman, A. I., A. Korotysheva, Ya. Satin, G. Shilova,
and T. Panfilova. 2013. On a queueing model with group
services. Lecture notes in communications in computer and
information science. 356:198–205. doi: 10.1007/978-3-
642-35980-4 22.
- Zeifman, A. I., Y. Satin, G. Shilova, V. Korolev, V. Bening,
and S. Shorgin. 2013. OnMt/Mt/S type queue with
group services. ECMS 2013: 27th Conference (European)
on Modeling and Simulation Proceedings. Alesund, Norway.
604–609. doi: 10.7148/2013-0604.
- Zeifman, A. I., A. V. Korotysheva, Ya.A. Satin, and
S. Ya. Shorgin. 2012. Otsenki v nul’-ergodicheskom sluchae
dlya nekotorykh sistem obsluzhivaniya [Bounds in
null ergodic case for some queueing systems]. Informatika
i ee Primeneniya — Inform. Appl. 6(4):27–33.
[+] About this article
Title
GENERAL BOUNDS FOR NONSTATIONARY CONTINUOUS-TIME MARKOV CHAINS
Journal
Informatics and Applications
2014, Volume 8, Issue 1, pp 106-117
Cover Date
2014-03-31
DOI
10.14357/19922264140111
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
nonstationary continuous-time chains andmodels; nonstationary Markov chains; perturbation bounds;
special norms; queueing models
Authors
A. I. Zeifman , , V.Yu. Korolev , , A.V. Korotysheva , and S. Ya. Shorgin
Author Affiliations
Vologda State University, 15 Lenin Str., Vologda 160000, Russian Federation
Institute of Informatics Problems, Russian Academy of Sciences, 44-2 Vavilov Str.,Moscow 119333, Russian Federation
Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics,
M.V. Lomonosov Moscow State University, 1-52 Leninskiye Gory, GSP-1,Moscow 119991, Russian Federation
|