Informatics and Applications
2014, Volume 8, Issue 1, pp 77-88
DYNAMIC CONTEXTS OF RELATIONAL-TYPE DATABASE
Abstract
The technology of dynamic formation of data presentation is sugessted. This technology is the
development of online analytical processing. Data source is a relational database with any scheme (not necessarily
hierarchical). Target data presentation is a composite table which allows to present multivariate data on a plane.
This table assumes separate formation of dimensions with the following juxtaposition of measures to dimensions
in the table. The foundation of data presentation is a table of connected joins, which satisfies contextual and logic
restrictions. The algorithms used to form such tables are suggested and their properties are investigated. Special
attention is given to contexts which are used to form tables of connected joins. The algorithm of directed search for
creation of contexts is proposed and comparative analysis of algorithms of contexts formation is performed on an
example. The investigated properties of contexts and the offered algorithms are intended to automate user work to
form new data presentations.
[+] References (20)
- Vassiliadis, P., and T. Sellis. 1999. A survey of logicalmodels
for OLAP databases. SIGMOD Rec. 28(4):64–69. doi:
10.1145/344816.344869.
- Pedersen, T.B., C. S. Jensen, and C. E. Dyreson. 2001.
A foundation for capturing and querying complex multidimensional
data. Inform. Syst. 26(5):383–423. doi:
10.1016/S0306-4379(01)00023-0.
- Lechtenborger, J., and G. Vossen. 2003. Multidimensional
normal forms for data warehouse design. Inform. Syst.
28(5):415–434. doi: 10.1016/S0306-4379(02)00024-8.
- Li, H.-G., H. Yu, D. Agrawal, and A. E. Abbadi. 2007.
Progressive ranking of range aggregates. Data Knowl. Eng.
63(1):4–25. doi: 10.1016/j.datak.2006.10.008.
- Lehner, W., J. Albrecht, and H. Wedekind. 1998. Normal
forms for multidimensional databases. 10th Conference
(International) on Scientific and Statistical Database
Management Proceedings.Capri: IEEE Computer Society.
63–72.
- Giorgini, P., S. Rizzi, and M. Garzetti. 2005. Goaloriented
requirement analysis for data warehouse design.
8th ACM Workshop (International) on Data Warehousing
and OLAP Proceedings. Bremen: ACM. 47–56.
- Mazon, J.-N., J. Trujillo, and J. Lechtenborger. 2007. Reconciling
requirement-driven data warehouses with data
sources via multidimensional normal forms. Data Knowl.
Eng. 63(3):725–751. doi: 10.1016/j.datak.2007.04.004.
- Kukin, A. V., and S. V. Zykin. 2002. Postroeniematematicheskoymodeli
uchebnogo protsessa dlya dolgosrochnogo
planirovaniya [Creation of the mathematical model of organization
of the study process for long-term planning].
Matematicheskie struktury i modelirovanie [Mathematical
Structures and Modeling] 10:77–86.
- Redreev, P.G. 2009. Postroenie ierarkhiy v mnogomernykh
modelyakh dannykh [Construction of hierarchies
in multidimensional data models]. Izvestija Saratovskogo
Universiteta. Seriya Matematika. Mekhanika. Informatika
[News of Saratov University. Mathematics. Mechanics.
Computer Science ser.] 9(4-1):84–87.
- Ullman, J. 1980. Principles of database systems. Computer
Science Press. 379 p.
- Maier, D. 1983. The theory of relational databases. Computer
Science Press. 637 p.
- Casanova, M., R. Fagin, and C. Papadimitriou. 1984.
Inclusion dependencies and their interaction with functional
dependencies. J. Comput. Syst. Sci. 28(1):29–59.
doi: 10.1145/588111.588141.
- Missaoui, R., and R. Godin. 1990. The implication
problem for inclusion dependencies: A graph approach.
SIGMOD Record 19(1):36–40. doi: 10.1145/382274.
382402.
- Levene, M., and M.W. Vincent. 2000. Justification for
inclusion dependency normal form. IEEE Trans. Knowl.
Data Eng. 12(2):281–291. doi: 10.1109/69.842267.
- Miller, L., and S. Nilakanta. 1998. Data warehouse modeler:
A CASE tool for warehouse design. 31st Annual
Hawaii Conference (International) on System Sciences.Kohala
Coast: IEEE Computer Society. 42–48.
- Zykin, S. V., and A.N. Poluyanov. 2008. Formirovanie
predstavleniy dannykh s kontekstnymi ogranicheniyami
[Formation of the data representations with contextual
restrictions]. Omskiy Nauchnyy Vestnik [Omsk Scientific
Bulletin] 1(64):141–144.
- Zykin, S. V. 2001. Postroenie otobrazheniya relyatsionnoy
bazy dannykh v spiskovuyu model’ dannykh [Construction
ofmapping of a relational database at the listmodel of
data].Upravlyayushchie Sistemy iMashiny [Control Systems
and Machines] 3:42–63.
- Zykin, S. V. 1993. Otsenka moshchnosti spiska dlya otobrazheniya
tipa “chastichnoe soedinenie” [The list size
estimation for mapping of “partial join” type]. Kibernetika
i Sistemnyy Analiz [Cybernetics and Systems Analysis]
6:142–152.
- Zykin, S. V. 2010. Formirovanie giperkubicheskogo predstavleniya
dannykh so spisochnymi komponentami [Formation
of the hypercubic data representation with list
components]. Informatsionnye tekhnologii i vychislitel’nye
sistemy [Information Technologies and Computing Systems]
4:38–46.
- Redreev, P.G. 2009. Postroenie tablichnykh prilozheniy
so spisochnymi komponentami [Construction of applications
with the list components]. Informatsionnye
Tekhnologii [Information Technologies] 5:7–12.
[+] About this article
Title
DYNAMIC CONTEXTS OF RELATIONAL-TYPE DATABASE
Journal
Informatics and Applications
2014, Volume 8, Issue 1, pp 77-88
Cover Date
2014-03-31
DOI
10.14357/19922264140108
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
relational database; context; lossless join; composite table
Authors
S. V. Zykin
Author Affiliations
Sobolev Institute o fMathematics, Siberian Branch of the Russian Academy of Sciences, 4 Acad. Koptyug Av.,
Novosibirsk 630090, Russian Federation
|