Informatics and Applications
2014, Volume 8, Issue 1, pp 36-44
ASYMPTOTIC PROPERTIES OF WAVELET THRESHOLDING RISK ESTIMATE IN THE MODEL OF DATA WITH CORRELATED NOISE
- A.A. Eroshenko
- O. V. Shestakov
Abstract
Wavelet thresholding techniques of denoising are widely used in signal and image processing. These
methods are easily implemented through fast algorithms; so, they are very appealing in practical situations. Besides,
they adapt to function classes with different amounts of smoothness in different locations more effectively than the
usual linear methods. Wavelet thresholding risk analysis is an important practical task because it allows determining
the quality of techniques themselves and equipment which is being used. In the present paper, asymptotical
properties of mean-square risk estimate of wavelet thresholding techniques have been studied in the model of data
with correlated noise. The conditions under which the unbiased risk estimate is consistent and asymptotically
normal are given. These results allow constructing asymptotical confidence intervals for wavelet thresholding risk,
using only the observed data.
[+] References (20)
- Donoho, D., and I.M. Johnstone. 1994. Ideal spatial
adaptation via wavelet shrinkage. Biometrika 81(3):425–
455.
- Donoho, D., and I.M. Johnstone. 1995. Adapting to unknown
smoothness via wavelet shrinkage. J. Amer. Stat.
Assoc. 90:1200–1224.
- Donoho, D. L., I.M. Johnstone, G. Kerkyacharian, and
D. Picard. 1995. Wavelet shrinkage: Asymptopia? J. R.
Statist. Soc. Ser. B. 57(2):301–369.
- Marron, J. S., S. Adak, I.M. Johnstone, M.H. Neumann,
and P. Patil. 1998. Exact risk analysis of wavelet regression.
J. Comput. Graph. Stat. 7:278–309.
- Antoniadis,A., and J.Fan. 2001. Regularization of wavelet
approximations. J. Amer. Statist. Assoc. 96(455):939–967.
- Markin,A. V. 2009. Predel’noe raspredelenie otsenki riska
pri porogovoy obrabotke veyvlet-koeffitsientov [Limit distribution
of risk estimate of wavelet coefficient thresholding].
Informatika i ee Primeneniya — Inform. Appl.
3(4):57–63.
- Markin, A. V., and O. V. Shestakov 2010. O sostoyatel’nosti
otsenki riska pri porogovoy obrabotke veyvletkoeffitsientov
[Consistency of risk estimation with thresholding
of wavelet coefficients]. Vestn. Mosk. Un-ta. Ser. 15.
Vychisl. Matem. i Kibern. [Herald of Moscow University,
Computational Mathematics and Cybernetics] 1:26–34.
- Shestakov, O. V. 2010. Approksimatsiya raspredeleniya
otsenki riska porogovoy obrabotki veyvlet-koeffitsientov
normal’nym raspredeleniem pri ispol’zovanii vyborochnoy
dispersii [Normal approximation for distribution
of risk estimate for wavelet coefficients thresholding
when using sample variance]. Informatika i ee Primeneniya—
Inform. Appl. 4(4):73–81.
- Shestakov, O. V. 2012. O tochnosti priblizheniya
raspredeleniya otsenki riska porogovoy obrabotki veyvletkoeffitsientov
signala normal’nym zakonom pri neizvestnom
urovne shuma [On the accuracy of normal approximation
for risk estimate distribution when thresholding
signal wavelet coefficients in case of unknown noise level].
Sistemy i Sredstva Informatiki — Systems and Means of
Informatics 22(1):142–152.
- Shestakov, O. V. 2012. Asimptoticheskaya normal’nost’
otsenki riska porogovoy obrabotki veyvlet-koeffitsientov
pri vybore adaptivnogo poroga [Asymptotic normality of
adaptive wavelet thresholding risk estimation]. Doklady
RAN [Doklady Mathematics] 445(5):513–515.
- Shestakov, O. V. 2012. Zavisimost’ predel’nogo raspredeleniya
otsenki riska porogovoy obrabotki veyvlet-koeffitsientov
signala ot vida otsenki dispersii shuma pri vybore
adaptivnogo poroga [The dependence of the limiting
distribution of the risk assessment thresholding wavelet
coefficients of the signal on the type of noise variance estimation
when selecting an adaptive threshold]. T-Comm—
Telekommunikacii i Transport [T-Comm — Telecommunications
and Transport] 1:46–51.
- Shestakov, O. V. 2013. Tsentral’naya predel’naya teorema
dlya funktsii obobshchennoy kross-validatsii pri porogovoy
obrabotke veyvlet-koeffitsientov [Central limit theorem
for generalized cross-validation function in wavelet
thresholding method]. Informatika i ee Primeneniya —
Inform. Appl. 7(2):40–49.
- Daubechies, I. 1992. Ten lectures on wavelets. SIAM. 357 p.
- Mallat, S. 1999. A wavelet tour of signal processing. Academic
Press. 851 p.
- Boggess, A., and F. Narkowich. 2001. A first course in
wavelets with Fourier analysis. Prentice Hall. 283 p.
- Johnstone, I.M., and B.W. Silverman. 1997. Wavelet
threshold estimates for data with correlated noise. J. Roy.
Statist. Soc. Ser. B. 59:319–351.
- Johnstone, I.M. 1999. Wavelet shrinkage for correlated
data and inverse problems: Adaptivity results. Statistica
Sinica 9(1):51–83.
- Taqqu, M. S. 1975. Weak convergence to fractional Brownian motion
and to the Rosenblatt process. Z.Wahrscheinlichkeitsth.
verw. Geb. 31:287–302.
- Bradley, R.C. 2005. Basic properties of strong mixing
conditions. A survey and some open questions. Probab.
Surveys 2:107–144.
- Peligrad, M. 1996. On the asymptotic normality of sequences
of weak dependent random variables. J. Theoret.
Prob. 9(3):703–715.
[+] About this article
Title
ASYMPTOTIC PROPERTIES OF WAVELET THRESHOLDING RISK ESTIMATE IN THE MODEL OF DATA WITH CORRELATED NOISE
Journal
Informatics and Applications
2014, Volume 8, Issue 1, pp 36-44
Cover Date
2014-03-31
DOI
10.14357/19922264140105
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
wavelets; unbiased risk estimate; correlated noise; asymptotic normality
Authors
A.A. Eroshenko and O. V. Shestakov ,
Author Affiliations
M.V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cibernetics,
1-52 Leninskiye Gory, GSP-1,Moscow 119991, Russian Federation
Institute of Informatics Problems, Russian Academy of Sciences, 44-2 Vavilov Str.,Moscow 119333, Russian
Federation
|