Informatics and Applications
December 2013, Volume 7, Issue 4, pp 112-139
CONCEPTUAL DECLARATIVE PROBLEMS PECIFICATION AND SOLVING IN DATA INTENSIVE DOMAINS
- L. Kalinichenko
- S. Stupnikov
- A. Vovchenko
- D. Kovalev
Abstract
Various notations aimed at defining the semantics of a computation in terms of the application domains
have been experienced for conceptual modeling. For example, entity-relationship (ER) approach and UML
(Unified Modeling Language) diagrams allow one to specify the semantics informally. Ontology languages based
on description logic (DL) have been developed to formalize the semantics of data. However, it is now generally
acknowledged that data semantics alone are insufficient and still representation of data analysis algorithms is
necessary to specify data and behavior semantics in one paradigm. Moreover, the curse of ever increasing diversity
of multistructured data models gave rise to a need for their unified, integrated abstraction to make specifications
independent of real data in data intensive domains (DID). To overcome these disadvantages, a novel approach for
applying a combination of the semantically different declarative rule-based languages (dialects) for interoperable
conceptual specifications over various rule-based systems (RSs) relying on the logic program transformation
technique recommended by the W3C (World Wide Web Consortium) Rule Interchange Format (RIF) has been
investigated. Such approach is coherently combined with the specification facilities aimed at the semantic
rule-based mediation intended for the heterogeneous data base integration. The infrastructure implementing the
multidialect conceptual specifications by the interoperable RSs and mediating systems (MSs) is introduced. The
proof-of-concept prototype of the infrastructure based on the SYNTHESIS MS and RIF standard is presented.
The approach for multidialect conceptualization of a problem domain, rule delegation, rule-based programs and
mediators interoperability is explained in detail and illustrated on a real nondeterministic polynomial time (NP)
complete use-case in the finance domain. The research results are promising for the usability of the approach
and of the infrastructure for conceptual, declarative, resource independent and reusable data analysis in various
application domains.
[+] References (54)
- Hey, T., S. Tansley, and K. Tolle, eds. 2009. The fourth
paradigm: Data-intensive scientific discovery. Redmond:
Microsoft Research. 252 p.
- Challenges and opportunities with big data. A community
white paper developed by leading researchers across the United States. 2012. Available
at: http://cra.org/ccc/docs/init/bigdatawhitepaper.pdf
(accessed November 21, 2013).
- Kappe l, G., M. Wimmer, W. Retschitzegger, and
W. Schwinger. 2011. Leveraging model-based tool integration
by conceptual modeling techniques. The evolution
of conceptual modeling. Eds.R. Kaschek and L.M. L.Delcambre.
Lecture notes in computer science ser. Berlin,
Heidelberg: Springer-Verlag. 6520:254–84.
- Kalinichenko, L.A., S.A. Stupnikov, and D.O.Martynov.
2007. SYNTHESIS: A language for canonical information
modeling and mediator definition for problem solving in
heterogeneous information resource environments. M.:
IPIRAN. 171 p.
- Kalinichenko, L.A., D.O. Briukhov, D.O. Martynov,
N.A. Skvortsov, and S.A. Stupnikov. 2007. Mediation
framework for enterprise information system infrastructures.
9th Conference (International) on Enterprise Information
Systems ICEIS 2007 Proceedings. Funchal. Vol.
Databases and information systems integration. 246–51.
- Kalinichenko, L.A. 1990. Methods and tools for equivalent
data model mapping construction. Advances in
database technology — EDBT’90. Eds. F. Buncilhon,
C. Thanos, and D. Tsichritzis. Lecture notes in computer
science ser. Berlin, Heidelberg: Springer-Verlag.
416:92–119.
- Kalinichenko, L.A., and S.A. Stupnikov. 2012. Synthesis
of the canonicalmodels for database integrationpreserving
semantics of the value inventive data models. Advances in
database and information systems.Eds.T.Morzy,T.H.arder,
R. Wrembel, et al. Lecture notes in computer science ser.
Berlin, Heidelberg: Springer-Verlag. 7503:223–39.
- Boley, H., and M. Kifer, eds. 2013. RIF
overview. W3C working group note. 2nd ed. Available
at: http://www.w3.org/TR/rif-overview/ (accessed
November 21, 2013).
- Kalinichenko, L., S. Stupnikov, A. Vovchenko, and D. Kovalev.
2013. Rule-based multi-dialect infrastructure for
conceptual problem solving over heterogeneous distributed
information resources. New trends in databases and
information systems. Selected Papers of the 17th European
Conference on Advances in Databases and Information Systems
and Associated Satellite Events. Advances in Intelligent
Systems and Computing 241:61–68.
- Leone, N., G. Pfeifer, W. Faber, T. Eiter, G. Gottlob,
S. Perri, and F. Scarcello. 2006. The DLV system for
knowledge representation and reasoning. ACM Trans.
Comput. Log. 7(3):499–562.
- Kalinichenko, L.A., and S. A. Stupnikov. 2008. Constructing
ofmappings of heterogeneous informationmodels
into the canonical models of integrated information
systems. ADBIS 2008 Proceedings. Pori: Tampere University
of Technology. 106–22.
- Abrial, J.-R. 1996. The B-book: Assigning programs to
meanings.Cambridge:CambridgeUniversityPress. 816 p.
- Skvortsov, N.A. 2012. Otobrazhenie modeley dannykh
NoSQL v ob”ektnye specifikatsii [Mapping of
NoSQL data models to object specifications]. Trudy 14-y
Vserossiyskoy nauchnoy konferentsii “Elektronnye biblioteki:
Perspektivnye metody i tekhnologii, elektronnye kollektsii”’
RCDL 2012 [14th Russian Conference on Digital
Libraries RCDL 2012 Proceedings]. CEUR Workshop Proceedings
934:53–62.
- Stupnikov, S.A. 2013. Otobrazhenie grafovoymodeli dannykh
v kanonicheskuyu ob”ektno-freymovuyu informatsionnuyu
model’ pri sozdanii sistem integratsii neodnorodnykh
informatsionnykh resursov [Mapping of a
graph data model into an object-frame canonical information
model for the development of heterogeneous
information resources integration systems]. Trudy 15-y
Vserossiyskoy nauchnoy konferentsii “Elektronnye biblioteki:
Perspektivnye metody i tekhnologii, elektronnye kollektsii”
RCDL 2013 [15th Russian Conference on Digital Libraries
RCDL 2013 Proceedings]. Yaroslavl: P.G.Demidov
Yaroslavl State University. 193–202.
- Skvortsov, N.A. 2013. Otobrazhenie modeli dannykh
RDFv kanonicheskuyumodel’ predmetnykh posrednikov
[Mapping of RDF data model into the canonical model
of subject mediators]. Trudy 15-y Vserossiyskoy nauchnoy
konferentsii “Elektronnye biblioteki: Perspektivnye metody i
tekhnologii, elektronnye kollektsii” RCDL 2013 [15th Russian
Conference on Digital Libraries RCDL 2013 Proceedings].
Yaroslavl: P.G. Demidov Yaroslavl State University.
202–9.
- Stupnikov, S.A. 2013. Verifitsiruemoe otobrazhenie modeli
dannykh, osnovannoy na mnogomernykhmassivakh,
v ob”ektnuyu model’ dannykh [A verifiable mapping of
a multidimensional array data model into an object data
model]. Inform. Appl. 7(3):22–34.
- Fagin, R., P.G. Kolaitis, R. J. Miller, and L. Popa. 2005.
Data exchange: Semantics and query answering. Theor.
Comput. Sci. 336:89–124.
- Lenzerini, M. 2002. Data integration: A theoretical perspective.
ACM Symposium on Principles of Database Systems
(PODS) Proceedings. 233–46.
- Kalinichenko, L.A., D.O. Martynov, and S. A. Stupnikov.
2004. Query rewriting using views in a typed mediator environment.
Advances in databases and information systems.
Eds. G. Gottlob, A. Benczur, and J. Demetrovics. Lecture
notes in computer science ser. Berlin, Heidelberg:
Springer-Verlag. 3255:37–53.
- Boley, H., and M. Kifer, eds. 2013. RIF basic logic
dialect. W3C recommendation. 2nd ed. Available
at: http://www.w3.org/TR/rif-bld/ (accessed November
21, 2013).
- De Sainte Marie, C., G. Hallmark, and A. Paschke, eds.
2013. RIF production rule dialect. W3C recommendation.
2nd ed. Available at: http://www.w3.org/TR/rif-
prd/ (accessed November 21, 2013).
- Boley, H., and M. Kifer, eds. 2013. RIF framework for
logic dialects.W3Crecommendation. 2nd ed.Available at:
http://www.w3.org/TR/rif-§d/ (accessed November 21,
2013).
- Kifer, M., ed. 2010. RIF core logic programming
dialect based on the well-founded semantics. Available
at: http://ruleml.org/rif/RIF-CLPWD.html (accessed
November 21, 2013).
- Van Gelder, A., K.A. Ross, and J. S. Schlipf. 1991. The
well-founded semantics for general logicprograms. J.ACM
38(3):620–50.
- Heymans, S., and M. Kifer, eds. 2009. RIF
core answer set programming dialect. Available
at: http://ruleml.org/rif/RIF-CASPD.html (accessed
November 21, 2013).
- Gelfond, M., and V. Lifschitz. 1988. The stable model
semantics for logic programming. Logic Programming: 5th
Conference and Symposium Proceedings. 1070–80.
- De Bruijn, J., and C. Welty, eds. 2013. RIF RDF and OWL
Compatibility. W3C recommendation. 2nd ed. Available
at: http://www.w3.org/TR/rif-rdf-owl/ (accessed
November 21, 2013).
- Motik, B., P. F. Patel-Schneider, and B. Parsia, eds. 2012.
OWL 2 Web ontology language structural specification
and functional-style syntax. W3C recommendation. 2nd
ed. Available at: http://www.w3.org/TR/owl2-syntax/
(accessed November 21, 2013).
- Shvaiko, P., and J. Euzenat. 2005. A survey of schemabasedmatching
approaches. J.Data Semantics IV:146–71.
- Abiteboul, S., M. Bienvenu, A. Galland, et al. 2011.
A rule-based language for Web data management. 30th
ACM Symposium on Principles of Database Systems Proceedings.
ACMPress. 283–92.
- Gelfond, M. 2008. Answer sets. Handbook of knowledge
representation. Elsevier. 285–316.
- Motik, B., and R. Rosati. 2007. Closing semantic Web
ontologies. University of Manchester Report. Available
at: http://www.cs.ox.ac.uk/people/boris.motik/pubs/
mr06closing-report.pdf (accessed November 21, 2013).
- Chen, P. P., B. Thalheim, and L. Y. Wong. 1999. Future
directions of conceptual modeling. Conceptual modeling.
Eds. P. P. Chen, J. Akoka, H. Kangassulu, and B. Thalheim.
Lecture notes in computer science ser. Berlin, Heidelberg:
Springer-Verlag. 1565:287–301.
- Costal, D., C. G‚omez, and G. Guizzardi. 2011. Formal
semantics and ontological analysis for understanding subsetting,
specialization and redefinition of associations in
UML. Conceptual modeling — ER 2011. Eds.M. Jeusfeld,
L. Delcambre, and T.W. Ling. Lecture notes in computer
science ser. Berlin, Heidelberg: Springer-Verlag.
6998:189–203.
- Martinez, Y., C. Cachero, M. Matera, S. Abrahao, and
S. Lujan. 2011. Impact ofMDE approaches on the maintainability
of Web applications: An experimental evaluation.
Conceptual modeling — ER 2011. Eds. M. Jeusfeld,
L. Delcambre, and T.W. Ling. Lecture notes in computer
science ser. Berlin, Heidelberg: Springer-Verlag.
6998:233–46.
- Castro, L. F. Bai“ao, and G. Guizzardi. 2011. A semantic
qriented method for conceptual data modeling in
OntoUML based on linguistic concepts. Conceptual modeling
— ER 2011. Eds. M. Jeusfeld, L. Delcambre, and
T.W. Ling. Lecture notes in computer science ser. Berlin,
Heidelberg: Springer-Verlag. 6998:486–94.
- Fillottrani, P.R., E. Franconi, and S. Tessaris.
2011. The ICOM 3.0 intelligent conceptual modelling
tool and methodology. Semantic Web. IOS
Press. 1–14. Available at: http://www.semantic-web-
journal.net/sites/default/¦les/swj105 1.pdf (accessed
November 21, 2013).
- Maus, C., S. Rybacki, and A.M. Uhrmache.
2011. Rule-based multi-level modeling of cell biological
systems. BMC Syst. Biol. 5:166. Available
at: http://www.biomedcentral.com/content/pdf/1752-
0509-5-166.pdf (accessed November 21, 2013).
- Calvanese, D., G. De Giacomo, D. Lembo, M. Lenzerini,
A. Poggi, and R. Rosati. 2007. MASTRO-I: Efficient
integration of relational data throughDL ontologies. 2007
Workshop (International) on Description Logic (DL 2007)
Proceedings. CEURWorkshop Proceedings. 250.
- Cosentino, V., M.D. Del Fabro, and A. El Ghali. 2012.
Amodel driven approach for bridging ILOGrule language
and RIF. RuleML 2012 Proceedings. CEUR Workshop
Proceedings. 874. Available at: http://ceur-ws.org/Vol-
874/paper9.pdf (accessed November 21, 2013).
- Gonzalez-Moriyon, G., L. Polo, D. Berrueta,
and C. Tejo-Alonso. 2012. Final steel industry
public demonstrators. ONTORULE deliverable
D5.5. Available at: http://ontorule-project.eu/
outcomes%3Ffunc=¦leinfo&id=94.html (accessed
November 21, 2013).
- Loo, B. T., T. Condie, M. Garofalakis, D. E. Gay,
J.M. Hellerstein, P. Maniatis, R. Ramakrishnan,
T. Roscoe, and I. Stoica. 2006. Declarative networking:
Language, execution and optimization. ACM SIGMOD
Conference Proceedings. 97–108.
- Grumbach, S., and F. Wang. 2010. Netlog, a rule-based
language for distributed programming. Practical aspects of
declarative languages. Eds. M. Carro and R. Pe“na. Lectire
notes in computer science ser. Berlin, Heidelberg:
Springer-Verlag. 5937:88–103.
- Alvaro, P., W.R. Marczak, N. Conway, J.M. Hellerstein,
D. Maier, and R. Sears. 2010. Dedalus: Datalog in time
and space. Datalog reloaded. Eds. O. de Moor, G. Gottlob,
T. Furche, and A. Sellers. Lectures notes in computer
science ser. Berlin, Heidelberg: Springer-Verlag. 6702:
262–81.
- Grossmann, G., R. Thiagarajan, M. Schrefl, and
M. Stumptner. 2011. Conceptual modeling approaches
for dynamic Web service composition. The evolution of
conceptual modeling. Eds. R. Kaschek and L.M. L. Delcambre.
Lecture notes in computer science ser. Berlin,
Heidelberg: Springer-Verlag. 6520:180–204.
- Henderson-Sellers, B. 2011. Random thoughts on multilevel
conceptual modelling. The evolution of conceptual
modeling. Eds. R. Kaschek and L.M. L. Delcambre. Lecture
notes in computer science ser. Berlin, Heidelberg:
Springer-Verlag. 6520:93–116.
- Falbo, R.A., F. B. Ruy, and R.D. Moro. 2005. Using
ontologies to add semantics to a software engineering environment.
SEKE 2005 Proceedings. Curran Associates.
151–56.
- Berre, A., and M. Missikoff (Moderators). 2011. Panel:
Modeling for the future Internet. Conceptual modeling —
ER 2011. Eds.M. Jeusfeld, L. Delcambre, and T.W. Ling.
Lecture notes in computer science ser. Berlin,Heidelberg:
Springer-Verlag. 6998: 526–27.
- Porto, F., and S. Spaccapietra. 2011. Data model for scientificmodels
and hypotheses. The evolution of conceptual
modeling. Eds. R. Kaschek and L.M.L. Delcambre. Lecture
notes in computer science ser. Berlin, Heidelberg:
Springer-Verlag. 6520: 285–305.
- Racunas, S. A., N.H. Shah, I. Albert, and N. V. Fedoroff.
2004. Hybrow: A prototype system for computer-aided
hypothesis evaluation. Bioinformatics 20(1):257–64.
- Sharpe, W., G. J. Alexander, and J.W. Bailey. 1998. Investments.
Prentice Hall. 962 p.
- Gabbay, D.M. 2012. What is negation as failure? Logic
programs, norms and action. Eds. A. Artikis, R. Craven,
N.K.C ic ekli, et al. Lecture notes in computer science ser.
Berlin, Heidelberg: Springer-Verlag. 7360:52–78.
- Briukhov, D.O., A.E. Vovchenko, V.N. Zakharov,
O. P. Zhelenkova, L.A. Kalinichenko, D.O. Martynov,
N.A. Skvortsov, and S.A. Stupnikov. 2008. Arkhitektura
promezhutochnogo sloya predmetnykh posrednikov
dlya resheniya zadach nad mnozhestvom integriruemykh
neodnorodnykh raspredelennykh informatsionnykh
resursov v gibridnoy grid-infrastrukture virtual’nykh observatoriy
[The middle ware architecture of the subject
mediators for problem solving over a set of integrated
heterogeneous distributed information resources in the
hybrid grid-infrastucture of virtual observatories]. Inform.
Appl. 2(1):2–34.
- ATL Project. 2013. Available at: http://www.eclipse.org/
atl/ (accessed November 21, 2013).
[+] About this article
Title
CONCEPTUAL DECLARATIVE PROBLEMS PECIFICATION AND SOLVING IN DATA INTENSIVE DOMAINS
Journal
Informatics and Applications
December 2013, Volume 7, Issue 4, pp 112-139
Cover Date
2013-12-31
DOI
10.14357/19922264130412
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
conceptual specification; W3CRIF; logic rule languages; SYNTHESIS; database integration; mediators;
RIF-BLD; RIF-CASPD; multidialect infrastructure; rule delegation
Authors
L. Kalinichenko , S. Stupnikov , A. Vovchenko , and D. Kovalev
Author Affiliations
Institute of Informatics Problems, Russian Academy of Sciences, Moscow, Russia
|