Informatics and Applications
December 2013, Volume 7, Issue 4, pp 66-74
ON CONVERGENCE OF THE DISTRIBUTIONS OF RANDOM SUMS TO SKEW EXPONENTIAL POWER LAWS
- M. E. Grigor’eva
- V.Yu. Korolev
Abstract
An extension of the class of exponential power distributions (also known as generalized Laplace
distributions) to the nonsymmetric case is proposed. The class of skew exponential power distributions (skew
generalized Laplace distributions) is introduced as a family of special variance-mean normalmixtures. Expressions
for the moments of skew exponential power distributions are given. It is demonstrated that skew exponential power
distributions can be used as asymptotic approximations. For this purpose, a theoremis proved establishing necessary
and sufficient conditions for the convergence of the distributions of sums of a random number of independent
identically distributed random variables to skew exponential power distributions. Convergence rate estimates are
presented for a special case of randomwalks generated by compound doubly stochastic Poisson processes.
[+] References (26)
- Subbotin, M. T. 1923. On the law of frequency of error.
Mat. Sb. 31(2):296–301.
- Box, G., and G. Tiao. 1973. Bayesian inference in statistical
analysis. Reading, MA: Addison–Wesley. 608 p.
- Evans, M., N. Hastings, and J.B. Peacock. 2000. Statistical
distributions. 3rd. ed. N.Y.: John Wiley & Sons. 170 p.
- Leemis, L.M., and J. T. McQueston. 2008. Univariate
distribution relationships. Amer. Stat. 62(1):45–53.
- RiskMetric Group, J. P.Morgan. 1996. RiskMetrics Technical
Document. N.Y.
- Varanasi, M.K., and B. Aazhang. 1989. Parametric generalized
Gaussian density estimation. J. Acoust. Soc. Am.
86(4):1404–15.
- Nadaraja, S. 2005. A generalized normal distribution.
J. Appl. Stat. 32(7):685–94.
- West,M. 1987. On scale mixtures of normal distributions.
Biometrika 74(3):646–48.
- Choy, S. T.B., andA. F. F. Smith. 1997. Hierarchical models with
scale mixtures of normal distributions. Test 6:205–
21.
- Zolotarev, V.M. 1983. Odnomernye ustoychivye raspredeleniya
[One-dimensional stable distributions]. Moscow:
Nauka. 304 p.
- Korolev, V. Yu., V. E. Bening, L.M. Zaks, and A. I. Zeifman. 2012. Exponential power distributions as asymptotic
approximations in applied probability and statistics. Applied
Problems in Theory of Probabilities and Mathematical
Statistics Related to Modeling of Information Systems
(APTP + MS’2012). Book of abstracts of the 6th Workshop
(International) (Autumn Session).Moscow: IPI RAN. 60–
71.
- Barndorff-Nielsen, O. E. 1977. Exponentially decreasing
distributions for the logarithm of particle size. Proc. R.
Soc. Lond. Ser. A 353:401–19.
- Barndorff-Nielsen,O.E., J.Kent, and S rensenM.. 1982.
Normal variance-mean mixtures and z-distributions. Int.
Stat. Rev. 50(2):145–59.
- Korolev, V. Yu. 2013. Obobshhennye giperbolicheskie
raspredelenija kak predel’nye dlja sluchajnyh summ[Generalized
hyperbolic distributions as limit distributions for
randomsums] [Theory Probab. Appl.] 58(1):117–32.
- Zaks, L.M., and V. Yu. Korolev. 2013. Obobshchennye
dispersionnye gamma-raspredelenija kak predel’nye
dlja sluchajnyh summ [Variance-generalized-gammadistributions
as limit laws for randomsums]. Inform. Appl.
7(1):105–15.
- Gnedenko, B. V., and A.N. Kolmogorov. 1949. Predel’nye
raspredelenija dlja summ nezavisimyh sluchajnyh velichin
[Limit distributions for sums of independent random variables].
Moscow–Leningrad:GITTL. 264 p.
- Gnedenko, B. V., and V. Yu. Korolev. 1996. Random summation:
Limit theorems and applications. Boca Raton:
CRC Press. 275 p.
- Korolev, V. Yu. 1997. Postroenie modeley raspredeleniy
birzhevykh tsen pri pomoshchi metodov asimptoticheskoy
teorii sluchaynogo summirovaniya [Construction
of models for stock prices by methods of the asymptotic
theory of random summation]. Obozrenie Promyshlennoy
i Prikladnoy Matematiki [Surveys in Applied and Industrial
Mathematics] 4(1):86–102.
- Korolev, V. Yu. 2000. Asimptoticheskie svoystva ekstremumov
obobshchennyh protsessov Koksa i ikh primenenie k
nekotorym zadacham finansovoy matematiki [Asymptotic
properties of extrema of compound Cox processes and
their applications to some problems of financial mathematics].
Theory Probab. Appl. 45(1):182–94.
- Bening, V., and V.Korolev. 2002. Generalized Poisson models
and their applications in insurance and finance. Utrecht:
VSP. 434 p.
- Korolev, V. Yu., and I. A. Sokolov. 2008. Matematicheskie
modeli neodnorodnykh potokov ekstremal’nykh sobytiy
[Mathematical models of nonhomogeneous flows of extremal
events]. Moscow: TORUS PRESS. 200 p.
- Korolev, V. Yu., V. E. Bening, and S. Ya. Shorgin. 2011.
Matematicheskie osnovy teorii riska [Mathematical foundations
of risk theory]. 2nd ed. Moscow: Fizmatlit.
- Korolev, V. Yu. 2011. Veroyatnostno-statisticheskie metody
dekompozitsii volatil’nosti khaoticheskikh processov [Probabilistic
and statistical methods for the decomposition of the
volatility of chaotic processes]. Moscow: Moscow University
Press. 510 p.
- Korolev, V., and N. Skvortsova, eds. 2006. Stochastic models
of structural plasma turbulence. Utrecht: VSP. 400 p.
- Korolev, V. Yu., I.G. Shevtsova, and S. Ya. Shorgin. 2011.
O neravenstvakh tipa Berri–Jesseena dlya puassonovskikh
sluchaynykh summ [On the Berry–Esseen-type inequalities
forPoisson randomsums]. Informatics andApplications
5(3):64–66.
- Korolev, V., and I. Shevtsova. 2012. An improvement of
the Berry–Esseen inequality with applications to Poisson
and mixed Poisson random sums. Scand. Actuar.
J. 2:81–105. Available online since June 4, 2010.
DOI:10.1080/03461238.2010.485370.
[+] About this article
Title
ON CONVERGENCE OF THE DISTRIBUTIONS OF RANDOM SUMS TO SKEW EXPONENTIAL POWER LAWS
Journal
Informatics and Applications
December 2013, Volume 7, Issue 4, pp 66-74
Cover Date
2013-12-31
DOI
10.14357/19922264130407
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
random sum; generalized Laplace distribution; skew generalized Laplace distribution; exponential
power distribution; symmetric stable distribution; one-sided stable distribution; variance-mean normal mixture;
mixed Poisson distribution; mixture of probability distributions; identifiable mixtures; additively closed family;
convergence rate estimate
Authors
M. E. Grigor’eva and V.Yu. Korolev
Author Affiliations
Parexel International, Moscow, Russia
Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow State University; Institute
of Informatics Problems, Russian Academy of Sciences, Moscow, Russia
|