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ФИЛЬТРАЦИЯ СПЕЦИАЛЬНЫХ МАРКОВСКИХ

СКАЧКООБРАЗНЫХ ПРОЦЕССОВ ПО НАБЛЮДЕНИЯМ

С МУЛЬТИПЛИКАТИВНЫМИ ШУМАМИ∗

А. В. Борисов1

Аннотация: Работа посвящена решению задачи оптимальной фильтрации состояний специальных марков-
ских скачкообразных процессов (СМСП). Оцениваемое скрытое состояние включает в себя две блочные
компоненты. Первая представляет собой марковский скачкообразный процесс (МСП) с конечным мно-
жеством состояний. Вторая изменяется синхронно с первой и при фиксированной первой компоненте
образует последовательность независимых векторов. Наблюдения представляют собой диффузионный
процесс, снос и диффузия которого зависят от скрытого состояния. Задача заключается в построении
условного распределения состояния относительно имеющихся наблюдений. Предложено преобразова-
ние, трансформирующее исходные наблюдения в совокупность диффузионного процесса с единичной
диффузией и функции от оцениваемого состояния, наблюдаемой без шумов. Сконструирована мера,
относительно которой условное распределение абсолютно непрерывно. Решение задачи фильтрации
представлено в виде совокупности рекуррентно связанных стохастических интегро-дифференциальных
уравнений — вариантов уравнения Кушнера–Стратоновича — и интегральных соотношений.
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шумами; плотность условного распределения; уравнение Кушнера–Стратоновича
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1 Введение
Статья продолжает исследования, часть резуль-

татов которых уже опубликована в [1, 2]. Их объ-
ектом стали стохастические системы наблюдения
с СМСП в роли состояний. В качестве доступных
наблюдений выступают диффузионные процессы,
в которых и дрейф, и диффузия зависят от оце-
ниваемого состояния. Цель работы заключается
в определении условного распределения состояния
системы по имеющимся наблюдениям.

Зависимость интенсивности шумов от состоя-
ния имеет место во многих практических задачах
оценивания. Например, в задачах слежения за воз-
душными или морскими целями [3] в качестве ста-
тистической информации выступают угловые из-
мерения. Очевидно, что линейный размер ошибок,
порожденных угловыми измерениями, зависит от
действительного положения цели: линейная ошиб-
ка, соответствующая одной и той же угловой ошиб-
ке, растет с ростом дальности до цели.

В задачах мониторинга характеристик сетевых
соединений [4, 5], например доли загрузки «буты-
лочного горла» соединения, в качестве наблюдений
времени кругового обращения сегмента данных ис-
пользуются результаты осреднения большого чис-
ла измерений, поступивших за некоторый отрезок

времени. Тогда согласно центральной предельной
теореме для обобщенных процессов восстановле-
ния [6] результаты осреднения будут иметь при-
ближенно гауссовское распределение, у которого
и среднее значение, и дисперсия зависят от оцени-
ваемой характеристики.

В области финансовой математики [7, 8] в каче-
стве возможных целей оценивания выступают те-
кущий скрытый сценарий развития рынка и число-
вые характеристики, его отражающие. В качестве
доступной статистической информации выступают
логарифмические цены финансовых инструмен-
тов, представляющие сумму текущей процентной
ставки — показателя прибыли, и случайных флук-
туаций, масштабированных коэффициентом вола-
тильности — показателем риска. Очевидно, показа-
тели прибыли и риска зависят от текущего сценария
развития рынка. Упомянутые примеры подчерки-
вают распространенность наблюдений, шумы в ко-
торых зависят от состояния, подлежащего оцени-
ванию.

Работа организована следующим образом.

В разд. 2 дано описание исследуемой систе-
мы наблюдения и представлена постановка зада-
чи оптимальной фильтрации. Проанализированы
особенности исследуемой проблемы, значительно

∗Работа выполнялась с использованием инфраструктуры Центра коллективного пользования «Высокопроизводительные вычис-
ления и большие данные» (ЦКП «Информатика») ФИЦ ИУ РАН (г. Москва).
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усложняющие ее решение по сравнению с извест-
ными задачами.

Раздел 3 представляет преобразование исходных
наблюдений, позволяющее решить поставленную
задачу. Он также содержит детализацию требова-
ний, предъявляемых к системе наблюдения. Одно
из требований включает линейную зависимость ин-
тенсивности шумов от состояния.

Первая компонента преобразованных наблю-
дений является диффузионным процессом, дрейф
в котором — некоторая функция оцениваемого со-
стояния, а диффузия — единичная. Вторая ком-
понента представляет собой интенсивность шумов
исходных наблюдений — линейную функцию со-
стояния, наблюдаемую без шума. В разд. 4 приведе-
ны формулы, описывающие использование второй
компоненты наблюдений в начальный момент вре-
мени для построения оценки фильтрации.

Раздел 5 содержит решение поставленной зада-
чи фильтрации. Из-за наличия точных наблюде-
ний — линейных функций состояния — условное
распределение сосредоточено не на всем фазовом
пространстве, а на некотором его линейном под-
пространстве. Это подпространство изменяется
скачкообразно в соответствии со скачками бесшу-
мовой компоненты наблюдений. Между скачками
плотность условного распределения изменяется не-
прерывно и описывается системой стохастических
интегро-дифференциальных уравнений — анало-
гом уравнения Кушнера–Стратоновича для иссле-
дуемых СМСП в случае аддитивных шумов в на-
блюдениях [2].

В разд. 6 приведены заключительные замечания.

2 Постановка задачи

На полном вероятностном пространстве
с фильтрацией (Ÿ,F ,P , {Ft}t>0) рассматривается
стохастическая дифференциальная система наблю-
дений

Zt = Z0 +

t∫

0

DZ
Zs ds+ µ

Z
t ; (1)

ξt =

t∫

0

f(Zs) ds+

t∫

0

g(Zs) dws. (2)

В системе (1), (2) Zt ∈ SN × RMN — процесс,
ассоциированный с оцениваемым СМСП Zt ,
, col(θt, Yt) ∈ SN × RM [1]. Распределение Zt

определяется следующими параметрами:

– p0 ∈ RN и ˜— начальное распределение и мат-
рица интенсивностей переходов (МИП) блоч-

ной компоненты θt: распределение E {θt} ,
, pt определяется системой дифференциаль-
ных уравнений Колмогорова ‘pt = ˜

⊤pt с на-
чальным условием p0;

– š0(dy) = col(š10(dy), . . . ,š
N
0 (dy)) и š(dy) =

= col(š1(dy), . . . ,šN (dy))— начальное распре-
деление блочной компоненты Y0, а также ее
распределение после первого скачка: для лю-
бого B ∈ B(RM )

P {Y0 ∈ B|θ0 = en} = šn
0 (B),

а также если τ1 — момент первого скачка про-
цесса Z, то

P {Yt ∈ B|θt = en, τ1 < t} = šn(B).

Уравнение (1) представляет формулу Дынкина
для ассоциированного процессаZs:DZ в ней —
неслучайная матрица, а µZ

t — Ft-согласован-
ный мартингал [1].

Процесс ξt ∈ RK (2) представляет доступные
косвенные наблюдения, в которых шум опреде-
ляется Ft-согласованным винеровским процессом
wt ∈ RK ; интенсивность шума g(·) зависит от скры-
того состояния системы. Шумы с такой интенсив-
ностью называются мультипликативными.

Пусть Ot , σ{ξs : 0 6 s 6 t} — поток
σ-алгебр, порожденный процессом наблюдений ξ,
Ot , Ot+ — его замыкание справа. Задача опти-

мальной фильтрации заключается в определении
условного распределения Zt относительно Ot.

Сформулированная проблема имеет ряд ключе-
вых особенностей, значительно усложняющих как
ее теоретическое решение, так и численную реали-
зацию. Во-первых, поток σ-алгебр Ot, порож-
денный наблюдениями, не является непрерывным
справа [9, 10]. Переход к замыканию Ot — вы-
нужденная мера для последующего корректного
использования математического аппарата стоха-
стического анализа [11]. На практике теоретиче-
ский «предельный случай» Ot+ означает использо-
вание Ot+h, где h > 0 — некоторый малый шаг
запаздывания. Таким образом, решение исход-
ной задачи фильтрации заменяется либо сглажи-
ванием с фиксированным малым запаздыванием,
либо прогнозированием с тем же шагом. Если
же фильтрация есть лишь первый, вспомогатель-
ный шаг решения задачи оптимального стохасти-
ческого управления по неполной информации, то
переход к Ot+ или Ot+h означает невозможность
решения задачи управления в исходной поста-
новке и необходимость изменения ее формули-
ровки.
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Во-вторых, мультипликативные шумы в наблю-
дениях препятствуют непосредственному исполь-
зованию гирсановской замены меры и получения
оценки фильтрации с помощью формулы Калли-
анпура–Стрибеля [12] и ее обобщений [13]. За-
висимость интенсивности шумов наблюдений от
оцениваемого сигнала позволяет радикально по-
высить качество оценивания вплоть до точного
восстановления сигнала. С инженерной точки зре-
ния мультипликативные шумы можно рассматри-
вать как амплитудную модуляцию несущего сигна-
ла, представляющего собой винеровский процесс.
Исходные наблюдения могут быть преобразованы
в эквивалентную совокупность диффузионных на-
блюдений со стандартными винеровскими шумами
и квадратичной вариации наблюдений [14]. Данная
вариация — некоторая функция оцениваемого сиг-
нала — наблюдается в отсутствие каких-либо шу-
мов [15]. Использование этих точных наблюдений
требует построения обратной функции. Она ин-
дивидуальна в каждой практической задаче: носи-
телем соответствующего условного распределения
могут быть некоторые «дискретные» множества или
многообразия [16]. Необходимость использования
квадратичной вариации для вычисления оценки
оптимальной фильтрации также влечет дополни-
тельные проблемы в численной реализации. Дело
в том, что используемая в уравнении фильтрации
производная квадратичной вариации представля-
ет собой композицию двух предельных переходов:
первый позволяет получить саму вариацию, вто-
рой — вычислить ее производную. Обе эти опера-
ции численно выполняются только приближенно,
и это означает, что «бесшумовые» наблюдения на
практике содержат и остаточный шум, и ошибки
аппроксимации [14].

В-третьих, имеется существенная сложность
в описании условного распределения состояния
СМСП. Известно, что в случае фильтрации состоя-
ний диффузионных процессов условное распреде-
ление определено своей плотностью, описываемой
уравнением Кушнера–Стратоновича [17]. В ка-
честве носителя выступает все фазовое простран-
ство состояния. При фильтрации по наблюдениям
с мультипликативными шумами [16] носителем ста-
новится многообразие или некоторое «дискретное»
множество. В данной статье оценивается состояние
МСП, имеющего кусочно-постоянные траектории.
Условное распределение в этом случае не является
абсолютно непрерывным по мере Лебега. Необ-
ходима конструкция некоторой новой меры, отно-
сительно которой существует плотность распреде-
ления и которую можно описать в виде решения
некоторого варианта уравнения Кушнера–Страто-
новича.

3 Преобразование наблюдений
и дополнительные
предположения о системе
наблюдения

Далее в изложении используются следующие
обозначения:

– I — единичная матрица подходящей размер-
ности;

– 1 — вектор-строка подходящей размерности,
составленная из единиц;

– IA(x)— индикаторная функция множества A;

– λ , row(˜11, . . . ,˜NN)— вектор-строка, соста-
вленная из диагональных элементов МИП ˜;
˜ , ˜− diag(λ);

– I(t)— единичная ступенчатая функция, непре-
рывная справа;

– α̂t , E {α(t, Zt)} — оценка фильтрации функ-
ции от времени t и состояния системы Zt, у ко-
торой E

{
α2(t, Zt)

}
<∞.

Прежде всего представим преобразование,
трансформирующее исходные наблюдения в со-
вокупность Ot-согласованного диффузионного
процесса со стандартной диффузией и некото-
рой функции состояния, наблюдаемой без шумов.
Необходимость такого преобразования связана со
следующим фактом. Если шумы в исходных на-
блюдениях аддитивны, т. е. g(Zt) ≡ g = const, то
обновляющий процесс

νt ,

t∫

0

(
gg⊤

)−1/2 (
dξs − f̂s ds

)

содержит ту же информацию, что и исходные на-
блюдения, т. е. Fν

t = Ot ∀ t > 0. В общем же случае
зависимости интенсивности шумов g(·) от состоя-
нияZt обновляющий процесс, приобретающий вид

νt ,

t∫

0

(
̂g(Zs)g⊤(Zs)

)−1/2 (
dξs − f̂s ds

)
,

теряет часть информации, изначально содержа-
щейся в ξt, т. е. имеет место лишь включение Fν

t ⊂
⊂ Ot.

Рассмотрим квадратичную вариацию 〈ξ〉t — Ot-
согласованный процесс, который согласно правилу
Ито [11] представим в виде

4 ИНФОРМАТИКА И ЕЁ ПРИМЕНЕНИЯ том 19 выпуск 4 2025
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〈ξ〉t = ξtξ⊤t −
t∫

0

ξs dξ
⊤
s −

t∫

0

dξsξ
⊤
s =

=

t∫

0

g(Zs−)g
⊤(Zs−) ds.

Его производная слева представляет собой Ot-со-
гласованный процесс

d〈ξ〉t−
dt

= g(Zt−)g
⊤(Zt−)

с кусочно-постоянными траекториями, непрерыв-

ными слева. Он не совпадает с g(Zt)g
⊤(Zt) в момен-

ты скачков.
В качестве первой блочной компоненты пре-

образованных наблюдений используется Ot-согла-
сованный процесс

ηt ,
d〈ξ〉t+
dt

= vec
(
g(Zt)g

⊤(Zt)
)
,

функция оцениваемого состояния, наблюдаемая
без шумов; здесь vec означает операцию векториза-
ции [18], т. е. запись матрицы в вектор по столбцам.

Предположим дополнительно, что матрица
g(Zt)g

⊤(Zt) не вырождена. Тогда Ot-согласован-
ный процесс

ζt ,

t∫

0

η−1/2s dξs =

=

t∫

0

(
g(Zs)g

⊤(Zs)
)−1/2

f(Zs)︸ ︷︷ ︸
,F (Zs)

ds+Wt,

выступающий в качестве второй блочной компо-
ненты преобразованных наблюдений, содержит ад-
дитивный шум Wt, стохастически эквивалентный
некоторому стандартному винеровскому процес-
су [19].

Утверждение 1. Для любого t > 0 выполнено равенство

Ot = σ{ηs, ζs : 0 6 s 6 t}.

Д о к а з а т е л ь с т в о данного утверждения может
быть выполнено аналогично [10].

Детализируем свойства системы (1), (2).

A. Распределенияš0(·)иš(·)непрерывны по мере
Лебега: существуют такие функции

π0(y) = col(π
1
0(y), . . . , π

N
0 (y)) ;

π(y) = col(π1(y), . . . , πN (y)) ,

что для любых A ∈ B(RM )

P {Y0 ∈ A|θ0 = en} =
∫

A

πn
0 (y) dy ;

P {Yt ∈ A|θt = en, τ1 < t} =
∫

A

πn(y) dy .

Б. Носитель D ⊂ RM процесса Yt ограничен.

В. Функция f(e, y) : SN × RM → RK непрерывна
по второму аргументу, а также

∫

RM

N∑

n=1

f⊤(en, y)f(en, y) (π
n
0 (y) + π

n(y)) dy <∞.

Г. Интенсивность шумов в наблюдениях линей-
на по компоненте Yt, т. е. функция g(e, y) :
SN × RM → RK×K такова, что

vec
(
g(e, y)g⊤(e, y)

)
, G(e, y) =

=

N∑

n=1

e⊤en (•ny + γn) . (3)

Здесь {•n}n=1,N — известные неслучайные

K2 ×M-мерные матрицы; {γn}n=1,N — K2-
мерные вектор-столбцы.

Д. Интенсивность шумов в наблюдениях равно-
мерно невырожденна: существует такая α > 0,
что для любых n = 1, N и y ∈ D выполнено
неравенство

g(en, y)g
⊤(en, y) > αI.

Если бы распределения š и š0 были дискрет-
ными, то СМСП Zt можно было бы выразить через
некоторый МСП с конечным множеством состоя-
ний. Задача оптимальной фильтрации таких МСП
по наблюдениям с мультипликативными шумами
уже решена [10]. Условие А в этом контексте име-
ет следующий смысл: непрерывно распределенная
компонента Yt не может быть сведена к некоторо-
му случайному процессу с конечным множеством
состояний. В то же время решение задачи фильт-
рации при выполнении условия А есть первый шаг
в нахождении решения задачи при произвольном
виде распределений š и š0: в общем случае урав-
нения, характеризующие условное распределение,
очевидно, разобьются на уравнения для дискретной
и непрерывной составляющих.

Условие Б — ограниченность носителя компо-
ненты Yt, носит технический характер. Оно наряду
с остальными гарантирует существование условно-
го распределения в форме, представленной ниже.
Однако это условие — одно из достаточных, т. е.
при его нарушении условное распределение, тем
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не менее, может иметь заявленную форму. Не-
смотря на технический характер, данное условие не
представляется обременительным: в практических
задачах компонента Yt действительно ограничена.

Условие В совместно с Б гарантирует суще-
ствование второго момента процесса ξt и кор-
ректность вычисления условных математических
ожиданий различных квадратично интегрируемых
процессов — функций состояния системы.

Для условия Г имеются две причины. Во-
первых, линейная зависимость — самая простая;
с ее помощью можно с определенной точностью
приблизить другие зависимости. Линейными
стохастическими дифференциальными системами
с мартингалами в правой части типа (1) можно
характеризовать не только сам СМСПZt, но и про-
извольную функцию от него. На практике при
построении модели системы наблюдения можно
сразу определить Zt так, чтобы зависимость интен-
сивности шумов в наблюдениях от СМСП имела
вид (3), а функция сноса f(Zt) в наблюдениях (2)
уже строится в соответствии со сделанным выбо-
ром g(Zt). Во-вторых, линейная зависимость по-
зволяет одновременно исследовать оба случая пол-
ных прообразов: либо конечное множество, либо
многообразие в D.

Равномерная невырожденность шумов в наблю-
дениях — стандартное требование в задачах фильт-
рации [19]. В рассматриваемой задаче оно гаран-
тирует конечный второй момент преобразованных
наблюдений ζt.

Заметим, что процесс ηt имеет почти на-
верное (п. н.) кусочно-постоянные траектории,
причем последовательность моментов его скачков
{σn}n∈Z+

вложена в последовательность скачков
{τn}n∈Z+

процесса θt. Будем считать, что τ0 =

= σ0 , 0 P-п. н.

Следующий раздел посвящен построению
условного распределения оцениваемого процесса
в начальный момент времени. Эта же формула ис-
пользуется при пересчете условного распределения
в моменты {σn}.

4 Построение оценки
в начальный момент времени

Согласно определению, O0 = σ{η0}, причем

η0 =

N∑

n=1

θ⊤0 en (•nY0 + γn) .

Для каждой матрицы •n, n = 1, N , введем следу-
ющие обозначения:

dim
(
Ker⊥(•n)

)
=M ′

n, dim (Ker(•n)) =M
′′
n ,

M ′
n +M

′′
n ≡M ;

Pn = [P
′
n P

′′
n ] (n = 1, N) — ортогональные матри-

цы, первая блочная компонента которых P ′
n содер-

жит базисные векторы Ker⊥(•n), а вторая P ′′
n —

базисные векторы Ker(•n). Для характеризации
условного распределения Z0 относительно η0 рас-
смотрим N преобразований RM → RM , связанных
с параметрами функции G(·) (3):

y(v) = Pnv + •
+
n (ζ0 − γn). (4)

Здесь •+n означает матрицу, псевдообратную к •n;

v =

[
v′

v′′

]
: v′ ∈ RM ′

n , v′′ ∈ RM ′′

n .

На (RM ,B(RM )) определим семейство мер
µ(dv) = {µn(dv)}n=1,N :

µn(dv) ,

,





λ(dv′′) при M ′′
n > 0 — мера Лебега

на RM ′′

n , сосредоточенная

на подпространстве

{v : •ny(v) + γn = η0} ;
δ0(dv) при M ′′

n = 0 — единичная

мера на RM , сосредоточенная в 0.

Соответственно, интегралы по dµn определяются
следующим образом:
∫

RM

φ(v)µn(dv) ,

,






∫

R
M′′

n

φ(•+n (η0 − γn) + P
′′
n v

′′)λ(dv′′)

при M ′′
n > 0;∫

RM

φ(•+n (η0 − γn) + Pnv)δ0(dv)

при M ′′
n = 0.

Утверждение 2. Условное распределение состоя-
ния Z0 = col(θ0, Y0) сосредоточено на подмноже-
стве SN × RM , имеющем вид

⋃N
n=1{en} × {y ∈

∈ RM : •ny+γn = η0}. Оно описывается функцией

ψ̂0(y|η0) = col(ψ̂10(y|η0), . . . , ψ̂N
0 (y|η0))

с компонентами

ψ̂n
0 (y|η0) =

pn
0π

n
0 (y)

∑N

i=1

∫

RM

pi
0π

i
0(y(v))µ

i(dv)

. (5)
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Функция ψ̂0(y|η0) определяет условную плот-
ность распределения по мере µ: для любых n = 1, N
и B ∈ B(RM )

P {θ0 = en, Y0 ∈ B|η0} =

=

∫

RM

IB(v)ψ̂
n
0 (v)µ

n(dv) P-п. н.

Равенство (5) представляет некоторый вариант
формулы Байеса. Доказательство утверждения 2
основано на известной формуле условной плот-
ности распределения ρ(x|Y ) случайного вектора X
относительно наблюдений Y , когда совместная
плотность φX,Y (x, y) известна:

ρ(x|Y ) = φ(x, Y )∫
φ(u, Y ) du

.

Последняя формула используется после преобразо-
вания переменных (4).

Заметим, что при некоторых n множество {y ∈
∈ RM : •ny + γn = η0} превращается в точку
y = •+n (η0 − γn). С пользовательской точки зрения
возможность точно идентифицировать компонен-
туY0 для некоторых или даже всех значений МСПθ0
по наблюдению η0 означает коренное повышение
качества оценки фильтрации и упрощение алгорит-
ма ее вычисления.

Версия плотности (5) не регулярная: правая
часть не определена корректно, если ее знаменатель
равен 0. Эта проблема снимается путем доопреде-
ления функции ψ̂0(y|η0) распределением π0(y) для
всех значений η0, обнуляющих знаменатель.

5 Уравнения фильтрации

Обозначим: ηi , ησi
— значение бесшумовой

компоненты наблюдений в момент ее i-го скачка,

Ai ,
N⋃

n=1

{en} × {y ∈ RM : •ny + γn = ζi}︸ ︷︷ ︸
,An

i

(6)

есть полный прообраз наблюдения ηi.
Пусть B ,

⋃N
n=1{en}×Bn ⊆ Ai — произвольное

подмножество Ai. На интервале [σi,+∞) рассмот-
рим эволюцию процессов

IAi

t , I(t− σi)θtIAi
(Zt); UAi

t , I[σi,σi+1)(t);

V Ai

t , IAi

t UAi

t ;

IBt , I(t− σi)θtIB(Zt); QB
t , IBt U

Ai

t .

Согласно [20], верны следующие мартингальные
представления:

IAi

t = I(t− σi)



θσi
+

t∫

σi

(
diag(λ)IAi

s− +

+ diag(š(Ai))˜
⊤
θs−

)
ds+M1

t


 ;

UAi

t = I(t− σi)


1 +

+

t∫

σi

(
λV Ai

s− +š
⊤(Ai)˜

⊤
V Ai

s−

)
ds+M2

t


 ;

V Ai

t = I(t− σi)


θσi

+

+

t∫

σi

(
diag(λ) + diag(š(Ai))˜

⊤
)
V Ai

s− ds+M
3
t


 ;

IBt = I(t− σi)


IBσi

+

+

t∫

σi

(
diag(λ)IBs− + diag(š(B))˜

⊤
θs−

)
ds+M4

t



 ;

QB
t = I(t− σi)



IBσi
+

+

t∫

σi

(
diag(λ)QB

s− + diag(š(B))˜
⊤
V Ai

s−

)
ds+M5

t



 ,

где M ℓ
t , ℓ = 1, 5, t > σi — некоторые мартингалы.

Следующее утверждение описывает эволюцию
условной вероятности того, что Zt принадлежит
множеству B на полуинтервалах [σi, σi+1).

Утверждение 3. Пусть B ⊆ Ai — произвольное под-

множество Ai. На множестве {ω : σi(ω) 6 t <
< σi+1(ω)} P-п.н. выполнено равенство

ÎBt = (1Ṽ
A
t )

−1Q̃B
t ,

где

Q̃B
t , E

{
QB

t |Oσi
∨ Fζ

t

}

есть решения на [σi, σi+1) следующих стохастических

уравнений:
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Q̃B
t = Î

B
σi
+

t∫

σi

[
diag(λ)Q̃B

s + diag(š(B))˜
⊤
Ṽ Ai

s

]
ds+

+

t∫

σi

(
Q̃B

s F
⊤
s − Q̃B

s F̃
⊤
s

)
(dζs − F̃s ds); (7)

Ṽ Ai

t = θ̂σi
+

t∫

σi

[
diag(λ) + diag(š(Ai))˜

⊤
]
Ṽ Ai

s ds+

+

t∫

σi

(
˜V Ai
s F⊤

s − Ṽ Ai
s F̃⊤

s

)
(dζs − F̃s ds). (8)

Если B ∩ Ai = ∅, то ÎBt ≡ 0.

Д о к а з а т е л ь с т в о утверждения 3 следует из
формулы Каллианпура–Стрибеля [12] и аналогич-
но [21].

Очевидно, что уравнения (7) и (8) незамкнуты:
правые части уравнений, описывающих эволюцию

Q̃B
t и Ṽ Ai

t , содержат оценки фильтрации Q̃B
t F

⊤
t

и ˜V Ai
s F⊤

s произведений оцениваемых вероятностей
и дрейфов преобразованных наблюдений.

Ниже приведено основное утверждение рабо-
ты, представляющее решение задачи фильтрации
в терминах эволюции условной плотности распре-
деления относительно имеющихся наблюдений.

Утверждение 4. На интервалах [σj , σj+1) (j ∈ Z+)

постоянства процесса {ηt} условное распределение

состояния Zt относительно наблюдений Ot сосредо-

точено на множествах Aj (6). На каждом интерва-

ле (σj , σj+1) распределение описывается плотностью

ψ̂j(t, y) , col(ψ̂1j (t, y), . . . , ψ̂
N
j (t, y)): ∀ B ∈ B(RM ),

n = 1, N ,

P {θt = en, Yt ∈ B} =

=

∫

RM

IB(v)ψ̂
n
j (t, v)µ

n
j (dv) P-п. н.,

где

ψ̂n
j (t, y) =

ψ̃n
j (t, y)

∑N

ℓ=1

∫

RM

ψ̃ℓ
j(t, v)µ

ℓ
j(dv)

. (9)

Здесь ψ̃j(t, y) , col(ψ̃1j (t, y), . . . , ψ̃
N
j (t, y)), t ∈

∈ [σj , σj+1) — решение системы рекуррентно свя-

занных уравнений

ψ̃j(t, y) = ψ̃j(σj , y) +

t∫

σj

[
diag(λ)ψ̃j(s, y) +

+ diag(š(Aj)) diag(π(y))˜
⊤
Ṽ Aj

s

]
ds+

+

t∫

σj

diag(ψ̃j(s, y))
[
F (y)− F̃s1

]⊤
(dζs − F̃s ds), (10)

где

F (y) ,



F 1(e1, y) · · · F 1(eN , y)

...
. . .

...
FK(e1, y) · · · FK(eN , y)


 ;

F̃t ,
N∑

n=1

∫

RM



F 1(en, v)

...
FK(en, v)


 ψ̃n

j (t, v))µ
n
j (dv);

Ṽ
Aj

t ,
N∑

n=1

∫

RM

enψ̃
n
j (t, y))µ

n
j (dv).

Начальные условия

ψ̃j(σj , y) = col(ψ̃
1
j (σj , y), . . . , ψ̃

N
j (σj , y))

связаны с решением (10) на предыдущем временн‚ом

интервале:

ψ̃n
j (σj , y) =

θ̂n
σj−π

n(y)
∑N

ℓ=1

∫

RM

θ̂ℓ
σj−π

ℓ(v)µℓ
j(dv)

, (11)

где

θ̂n
σj− =

∫

RM

ψ̃n
j−1(σj−, v))µn

j−1(dv)

∑N

ℓ=1

∫

RM

ψ̃ℓ
j−1(σj−, u))µℓ

j−1(du)

,

а начальное условное распределение ψ̃0(0, y)) опреде-

лено формулой (5).

Д о к а з а т е л ь с т в о истинности утверждения 4
проводится аналогично [20, 21].

Условная плотность на интервалах между скач-
ками ηt описывается практически таким же урав-
нением, что и плотность состояния относительно
диффузионных наблюдений с аддитивными шума-
ми [2]. Однако имеются три существенных отли-
чия. Во-первых, условная плотность ψ̃j(t, y) пред-
ставляет распределение Zt совместно с событием
t < σj+1. Именно это обстоятельство объясняет
наличие дополнительной нормировки (9). Во-вто-
рых, носителем распределения выступает не все
пространство RM , а его линейные подпростран-
ства или даже конечные множества. В-третьих,
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условное распределение не изменяется непрерыв-
но: в моменты скачков бесшумовой компоненты
наблюдений условное распределение и его носи-
тель меняются скачкообразно.

Следует также отметить, что сомножитель
diag(š(Aj)) во втором слагаемом функции сноса
в (10) в силу условий А и Г представляет собой
диагональную матрицу с 0 и 1 на диагонали. Нули
соответствуют случаям, когда •n = 0, т. е. функция
квадратичной вариации не зависит от конкретного
значения компоненты Y : G(e, y) = G(e).

6 Заключение
Решение задачи оптимальной фильтрации

найдено: условное распределение имеет плот-
ность относительно набора специально сконстру-
ированных мер. Плотность описывается набором
рекуррентно связанных уравнений — обобщений
уравнений Кушнера–Стратоновича — и интеграль-
ных — вариантов формулы Байеса.

Наличие зависимости интенсивности шумов
наблюдений от оцениваемого сигнала позволяет
существенно повысить точность оценивания: но-
ситель условного распределения сокращается со
всего евклидова пространства RM до его подпро-
странства. В некоторых случаях вообще возможно
точное восстановление всего вектора состояния Zt

или части его компонент.
Системы стохастических уравнений (10) имеют

достаточно простую структуру, и для их численно-
го решения, казалось бы, применимы известные
алгоритмы приближенного решения стохастиче-
ских дифференциальных систем или их модифи-
кации [22, 23]. Однако это не так. Системы (10)
и соотношения (11) используют уже преобразован-
ные наблюдения ηt и ζt, в каждый момент вре-
мени представляющие собой результаты операций
предельного перехода. В практических задачах вы-
полнение этих операций невозможно: существует
некоторый минимальный шаг фиксации наблюде-
ний. Допредельная аппроксимация ηt содержит
недопустимо большую методическую ошибку, что
препятствует ее использованию в виде наблюдения,
не содержащего шума. Выходом из этой ситуа-
ции может послужить переход от исходной задачи
к фильтрации по наблюдениям, дискретизованным
по времени, и построение соответствующих алго-
ритмов численного решения [24, 25].
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component, forms a sequence of independent random vectors. The observations are modeled by a diffusion process
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ПРАКТИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОПРОСА

НЕСТАБИЛЬНОСТИ РАСШИРЕННОГО ФИЛЬТРА КАЛМАНА∗

А. В. Босов1, И. В. Урюпин2

Аннотация: Изучены варианты нестабильной работы расширенного фильтра Калмана (РФК). Комплекс
экспериментов выполнен с типовой моделью стохастической системы наблюдения. Моделировалось дви-
жение автономного объекта с постоянной средней скоростью в условиях неконтролируемых возмущений
скорости, формирующих хаотическую траекторию с регулярным целевым направлением. Наблюдения
двух независимых комплексов состоят из измерений углов направления (азимута и угла возвышения)
и дальности. Оценивание положения объекта выполняется базовым РФК и его модификацией по методу
линейных псевдонаблюдений. Базовый РФК оказывается нестабильным в исходной модели. Расши-
ренный фильтр Калмана по методу псевдонаблюдений обеспечивает стабильную оценку положения
с высокой точностью. Цель экспериментов состоит в том, чтобы показать, какие изменения в модели
системы наблюдения приводят к нестабильной работе этой модификации РФК. Для этого предложены,
просчитаны и проанализированы четыре сценария: (1) неточное детектирование начального положения;
(2) невозможность заранее идентифицировать параметры скорости; (3) движение со скачкообразным из-
менением параметров скорости с сохранением направления на цель; (4) неточное задание статистических
характеристик (ковариации) ошибок измерений. В каждом из сценариев РФК оказывается нестабиль-
ным, формируя оценку положения объекта неприемлемой точности. При этом характер нестабильности
и поведение оценок РФК различны, что продемонстрировано числовыми и графическими результатами
расчетов.

Ключевые слова: стохастическая фильтрация; дискретная стохастическая система наблюдения; расши-
ренный фильтр Калмана (РФК); РФК по методу линейных псевдонаблюдений
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1 Введение

Задача стохастической фильтрации, т. е. оце-
нивания состояния стохастической динамической
системы по результатам косвенных зашумленных
наблюдений, типична для широкого круга прило-
жений. Примеры использования методов и ал-
горитмов фильтрации можно обнаружить в таких
областях, как обработка сигналов и изображений,
навигационные системы, финансовое моделирова-
ние, управление роботами и многих других. Наибо-
лее широкий круг приложений, несомненно, имеет
оптимальный линейный фильтр [1] (фильтр Кал-
мана). Если модель не укладывается в линейно-га-
уссовскую постановку, то, за редкими исключени-
ями, применяются субоптимальные фильтры. Это
обоснованные только эмпирическими соображе-
ниями алгоритмы, не обладающие какими-либо
гарантированными свойствами.

Бесспорное первое место по частоте приме-
нения таких алгоритмов занимает эмпирический
нелинейный аналог фильтра Калмана [2] (РФК).

Привлекательность РФК объясняется его просто-
той и объяснимостью, так как в нем реализова-
на понятная концепция повторения калмановской
структуры оценки фильтрации за счет линеариза-
ции. Это самый простой и действенный способ ре-
ализовать эвристически обоснованную оценку для
нелинейной модели.

Обратная сторона этой простоты упоминается
в каждой работе по совершенствованию РФК. Ак-
куратно исследователи формулируют претензию,
называя РФК нестабильным. Что стоит за этой
нестабильностью, не всегда понятно. Наиболее
«драматические» примеры констатируют расходи-
мость оценки фильтра, т. е. неограниченно увеличи-
вающуюся разность между оценкой и оцениваемым
состоянием. Хороший пример в классической на-
вигации есть в [3], в химическом производстве —
в [4], в приложениях SLAM (Simultaneous Local-
ization and Mapping, одновременная локализация
и построение карты) — в [5], причем в [5] выпол-
нено подробное изучение поведения оценки РФК
и предпринята попытка выяснить и устранить при-

∗Работа выполнялась с использованием инфраструктуры Центра коллективного пользования «Высокопроизводительные вычис-
ления и большие данные» (ЦКП «Информатика») ФИЦ ИУ РАН (г. Москва).

1Федеральный исследовательский центр «Информатика и управление» Российской академии наук, ABosov@frccsc.ru
2Федеральный исследовательский центр «Информатика и управление» Российской академии наук, uryupin93@yandex.ru
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чины расходимости. Главной причиной объявлена
разница между реальной и вычисленной эвристи-
чески ковариацией ошибки оценки. Это явление
иногда называют коллапсом ковариации и даже пы-
таются изучать системно, например с позиции тео-
рии устойчивости [6] или наблюдаемости [7]. Кроме
этого, есть много других направлений исследова-
ний. Значительная теоретическая работа выполне-
на в [8] применительно к байесовской идентифи-
кации параметров с помощью РФК. К сожалению,
практического развития из этого направления не
получилось, есть только работа [9], в которой не-
много уточнена теория [8], но других практических
результатов нет.

Есть любопытные исследования поведения
РФК в нетипичной для стохастических фильтров
задаче минимизации нелинейной функции [10].
К этому же направлению можно отнести исследо-
вания поведения оценки РФК для «малых» шумов,
т. е. когда исходно нелинейная детерминированная
система заменяется стохастической с «малыми» ад-
дитивными возмущениями [11]. Эти и подобные
работы пополнили инструментальный багаж ис-
следований РФК и выявили много его интересных
свойств, но их практическое применение не слиш-
ком очевидно. Помочь понять, можно ли приме-
нять РФК в конкретной модели в задаче фильтра-
ции состояния, они не могут.

Есть и реальные шаги в попытке сформулиро-
вать достаточные условия стабильного поведения
оценки РФК. Так, в работах [12] для дискретно-
го времени и [13] для непрерывного показано, что
ошибка РФК остается ограниченной лишь при до-
статочно жестких условиях, фактически когда есть
устойчивая линейная система, для которой выпол-
нены условия наблюдаемости и которая мажори-
рует нелинейную. Это очень жесткие условия, но
авторами приведены примеры, когда при их нару-
шении (при большом шуме и при большой ошиб-
ке определения начального условия) оценка РФК
расходится. Аналогичное исследование выполнено
в [14] для интересной модификации РФК, близкой
по смыслу к фильтру линейных псевдоизмерений
(см. далее). Идея в том, чтобы рассматривать функ-
ции измерителя, в которых есть линейный множи-
тель. Тогда ограничения, гарантирующие сходи-
мость, опять-таки получаются из линейной теории.
Таких результатов не очень много, и они очень
ограничены в использовании. Это означает, что
вопрос о применимости РФК остается исключи-
тельно в практической области, т. е. надо экспери-
ментировать и проверять, как работает фильтр на
конкретной модели.

Для упомянутых исследований и для ряда дру-
гих надо отдельно обсуждать вопрос, что понимать

под стабильностью. Процитированные статьи га-
рантируют ограниченность второго момента оцен-
ки РФК. Но можно ли считать это стабильностью?
Целью фильтрации ставится получение оценки со-
стояния, «близкой» к точному значению, как пра-
вило, в смысле среднеквадратического критерия.
Таким образом, выбирать оценку можно из класса
случайных функций с конечным вторым моментом.
Это необходимое условие и проверяется, и оно же
означает нерасходимость оценки фильтра. Но это
формальная сторона вопроса. Практически же все-
гда есть какие-то простые оценки. Как минимум
всегда имеется тривиальная оценка — математиче-
ское ожидание состояния, т. е. оценка, вообще не
учитывающая косвенные измерения. Ее точность —
ковариация состояния. Конечность этой ковари-
ации — необходимое условие постановки задачи
фильтрации. Эта же величина — нижняя грани-
ца «разумности» для оценок фильтрации. Большие
величины означают проигрыш тривиальной оцен-
ке, т. е. отсутствие смыла (при этом расходимости
нет). Это первое, что надо учитывать, формируя
понимание нестабильности РФК.

Рассуждая далее, надо сказать, что во многих
задачах возможно использование более сложных
«простых» оценок. Это могут быть оптимальные
линейные оценки или статические оценки метода
наименьших квадратов (МНК) в случае линейных
наблюдений. Для многих реальных систем мож-
но вычислять оценки прямых наблюдений, когда
есть возможность, пренебрегая погрешностями из-
мерений, вычислять наблюдаемое значение в виде
обратной функции. Такое возможно, например,
если измерения носят геометрический характер
и положение описывается геометрическими при-
митивами: углами и длинами. В этом случае есть
«простая» оценка, и логично требовать от РФК точ-
ности как минимум не худшей.

Цель данной статьи — на живом практическом
примере показать, как ведет себя работающий, т. е.
стабильный РФК, какие изменения (в том числе
неточности, неопределенности) в модели приводят
к его нестабильной работе и как именно выглядит
эта нестабильная работа. Для этого подобрана мо-
дель, описывающая движение автономного объек-
та в возмущенной среде. За основу взято движение
с постоянной средней скоростью, хаотический ха-
рактер которому придают неконтролируемые воз-
мущения, но при этом сохраняется регулярное це-
левое направление. Эта модель простой линейной
системы при известных параметрах легко становит-
ся нелинейной при неполной априорной инфор-
мации и не менее легко модифицируется для учета
более сложного движения объекта (скачкообразной
смены направлений). Наблюдения производят два
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независимых комплекса, выполняющих измерения
углов направления на движущийся объект (азимута
и угла возвышения) и дальности.

Использовать в экспериментах только базовый
РФК [2] при наличии множества его модификаций
было бы не вполне актуально и благоразумно. Из
множества концепций по усовершенствованию ал-
горитма РФК для выбранной модели наблюдений
есть безусловно предпочтительный подход — ме-
тод линейных псевдонаблюдений. Геометрический
характер измерений дает возможность выполнить
такие преобразования, чтобы заменить исходную
модель наблюдений на квазилинейную, в кото-
рой РФК полностью повторит структуру линейно-
го фильтра Калмана, так что «улучшать», оставаясь
в рамках концепции РФК, получается нечего.

По-видимому, впервые метод линейных псев-
донаблюдений был предложен для угловых изме-
рений в работе [15], хотя сами модели систем сле-
жения по результатам пеленга начали привлекать
внимание еще раньше [16]. С развитием более до-
ступных вычислительных средств стало возможным
вернуться к этой идее на более современном уров-
не [17], получившем дальнейшее развитие в [18, 19]
и других работах. В данной статье будет использо-
ваться модификация фильтра, предложенная в [20]
и детально исследованная в [21, 22] в гораздо бо-
лее сложной постановке со случайными запазды-
вающими наблюдениями. Именно при подготов-
ке работы [20] был сформирован вычислительный
эксперимент и определены те изменения в модели,
что нарушают стабильность РФК, причем характер
этих нарушений весьма разнообразен, что и дало
основание организовать их в статью.

2 Модель системы наблюдения

Использованная модель движения подробно об-
суждается в [23], модель наблюдения — в [24]. Здесь
они реализуют сценарий движения автономного ле-
тательного аппарата (ЛА, A) в направлении непо-
движной цели. Предполагается, что ЛА обнаружи-
вается с начальными координатами (XA, YA, ZA)
и продолжает движение, описываемое координа-
тами (X(t), Y (t), Z(t)) в системе Oxyz, связанной
с радиолокационным комплексом. Он состоит из
двух радиолокационных станций (РЛС), располо-
женных на поверхности Земли в точке O так, что
плоскость Oxy совпадает с поверхностью земли,
а ось Oz направлена вверх и соответствует высоте
(рис. 1).

Летательный аппарат хаотично маневрирует, на-
правляясь в цель O. Движение описывается дис-
кретной моделью, t = 0, 1, . . . , 1000, с шагом дис-

Рис. 1 Положение обнаруженного ЛА: ϕ — азимут; λ —
угол возвышения; r — дальность

кретизации δ = 0,0001 ч = 0,36 с, в течение 0,1 ч =
= 6 мин. В начальный момент времени ЛА обнару-
живается в положении, которое задают независи-
мые координаты с равномерным распределением:
XA ∼ R[20, 40], YA ∼ R[20, 40], ZA ∼ R[0,5; 1,5],
единица измерения — километры (км). Таким
образом, в начале движения ЛА обнаруживает-
ся на расстоянии r с математическим ожиданием
E{r} ≈ 42 км и дисперсией D{r} ≈ (2,9 км)2.

На каждой возможной траектории ЛА дви-
жется с постоянной средней скоростью, которая
задается случайным вектором s = (sX , sY , sZ)

′

(здесь и далее «′» — символ транспонирова-
ния). Его координаты независимы и заданы
распределениями: sX ∼ R[−200,−100], sY ∼
∼ R[−200,−100], sZ ∼ R[−10, 0], единица изме-
рения км/ч. Таким образом, средняя скорость
движения ЛА характеризуется математическим
ожиданием E{s} = (−150,−150,−5)′ и ковариаци-
ей D{s} ≈ diag(292; 292; 32), абсолютное значение
средней скорости ≈ 212 км/ч и направление дви-
жения — на начало координатO. За заданное время
ЛА в среднем перемещается на расстояние порядка
21 км, приближаясь к РЛС. При этом максималь-
ное расстояние в момент обнаружения ЛА t = 0 до
РЛС составляет ≈ 57 км, минимальное расстояние
≈ 28 км.

Реальная скорость S(t) = (SX(t), SY (t), SZ(t))
′

изменяется хаотически под воздействием ветра. На
интервале дискретизации скорость предполагает-
ся постоянной, в моменты времени t воздействие
ветра приводит к независимым отклонениям, кото-
рые моделируются аддитивным вектором возмуще-
ний wt = (wX(t), wY (t), wZ(t))

′. Его координаты —
независимые гауссовские величины. Отклонения
σsX

, σsY
иσsZ

скоростиS(t) от средней выбираются
равными средним значениям средней скорости s,
т. е. σsX

= |E{sX}| = 150, σsY
= |E{sY }| = 150

и σsZ
= |E{sZ}| = 5. Итоговая динамика имеет

вид:
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X(t) = X(t− 1) + δSX(t),

SX(t) = sX + σSX
wX(t) ;

Y (t) = Y (t− 1) + δSY (t),

SY (t) = sY + σSY
wY (t) ;

Z(t) = Z(t− 1) + δSZ(t),
SZ(t) = sZ + σSZ

wZ(t) ,

t = 0, 1, . . .





(1)

Получается, что моментные характеристи-
ки скорости S(t) постоянны: E{S(t)} = E{s},
D{S(t)} = diag{E{s2X},E{s2Y },E{s2Z}}.

Модель (1) — линейная в обоих используемых
вариантах: значение средней скорости s предпо-
лагается известным или нет. Динамика (1) для
применения РФК представляется идеальной, так
как шаг прогнозирования фильтра и пересчет эври-
стической ковариации ошибки прогнозирования
выполняются оптимальным образом.

В одном из экспериментов вместо (1) исполь-
зуется нелинейная динамика, а именно: моде-
лируются скачкообразные изменения постоянной
средней скорости s. Для этого используется не
зависящий от положения ЛА пуассоновский про-
цесс P (u), u = tδ, с постоянной интенсивностью
λ = 1/(2 [мин]). Для моделирования изменя-
ющихся значений постоянной средней скорости
вместо параметра s = (sX , sY , sZ)

′ в (1) теперь нуж-
на функция s(t) = (sX(t), sY (t), sZ(t))

′. Обозначим
через p(t) = P (tδ) − P ((t − 1)δ) индикатор скачка
процесса P (tδ) на текущем интервале дискретиза-
ции. Скачкообразное изменение постоянной сред-
ней скорости — новое значение средней скорости
движения S(t), появившееся в случайный момент
времени, — можно описать следующей моделью:

X(t) = X(t− 1) + δSX(t),

SX(t) = sX(t) + σSX
wX(t) ,

sX(t) = (1− p(t))sX(t− 1) + p(t)sp
X(t) ;

Y (t) = Y (t− 1) + δSY (t),

SY (t) = sY (t) + σSY
wY (t) ,

sY (t) = (1− p(t))sY (t− 1) + p(t)sp
Y (t) ;

Z(t) = Z(t− 1) + δSZ(t),

SZ(t) = sZ(t) + σSZ
wZ(t) ,

sZ(t) = (1− p(t))sZ(t− 1) + p(t)sp
Z(t).





(2)

Таким образом, если нет скачка в пуассоновском
процессе (p(t) = 0), то постоянная средняя ско-
рость на шаге t сохраняется такой же, как на шаге
t−1. В момент скачка (p(t) = 1) параметр принима-
ет новое значение sp(t). Сечения случайного векто-
ра sp(t) = (sp

X(t), s
p
Y (t), s

p
Z(t))

′ имеют тот же смысл,
что и сечения параметра s = (sX , sY , sZ)

′ в (1),

т. е. направляют ЛА на начало координат. В (1) это
направление можно выразить в виде:

E{sX} = −5E{XA};
E{sY } = −5E{YA};
E{sZ} = −5E{ZA}.





(3)

В модели (2) направление, заданное таким E{s},
можно менять при каждом скачке процесса P (u),
заменяя стационарное условие (3) динамическим:

E {sp
X(t)|X(t− 1)} = −5X(t− 1);

E {sp
Y (t)|Y (t− 1)} = −5Y (t− 1);

E {sp
Z(t)|Z(t− 1)} = −5Z(t− 1).





(4)

Равномерное распределение для координат sp(t)
сохраняется, интервалы определяются на каждом
шаге так, чтобы выполнялось (4) и сохранялась
дисперсия, например sp

X(t) ∼ R[−200,−100]+150−
− 5X(t− 1), так что E{sp

X(t)|X(t− 1)} = −5X(t− 1)
и D{sp

X(t)|X(t− 1)} = D{sX}.
Модель (2) — нелинейная, и возмущение sp(t)

в ней даже не является белым шумом. Но если в (2)
считать известной текущую постоянную среднюю
скорость s(t), т. е. немедленно получать инфор-
мацию об очередном скачке P (tδ) и новой ско-
рости sp(t), то для РФК условия окажутся снова
идеальными, потому что на шаге прогнозирова-
ния вычисление эвристической ковариации ошиб-
ки прогнозирования выполняется оптимальным
образом. Усложнять этот вариант, отказываясь от
информации об s(t), не имело смысла, так как ни-
же показано, что даже с такой моделью РФК не
справился, показав нестабильность.

Наблюдения, выполняемые в момент времени t,
содержат измерения по двум независимым каналам.
По каждому измеряется азимут ϕ, угол возвыше-
ния λ и дальность r (см. рис. 1):

y
(k)
ϕt = ϕt + v

(k)
ϕt = arctg

(
Y (t)

X(t)

)
+ v

(k)
ϕt ;

y
(k)
λt
= λt + v

(k)
λt
= arctg

(
Z(t)

|X(t)| cos(ϕt)

)
;

y
(k)
rt = rt + v

(k)
rt =

Z(t)

sin(λt)
+ v(k)rt

, k = 1, 2.





(5)

Вектор наблюдений

yt =
(
y(1)ϕt

, y
(1)
λt
, y(1)rt

, y(2)ϕt
, y
(2)
λt
, y(2)rt

)′

используется для реализации обычного РФК,
ошибки измерений

vt =
(
v(1)ϕt

, v
(1)
λt
, v(1)rt

, v(2)ϕt
, v
(2)
λt
, v(2)rt

)′
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предполагаются независимыми центрированными
гауссовскими со среднеквадратичными отклонени-
ями σϕ = σλ = (1/4)(π/180)рад (1◦ на 4σϕ или 4σλ),
σr = (1/4) · 0,1 км (100 м на 4σr).

Для варианта РФК по методу линейных псев-
донаблюдений вместо уравнений (5) используются
следующие:

Y
(k)
ϕt =

(
sin
(
y
(k)
ϕt

)
,− cos

(
y
(k)
ϕt

))(
X(t)
Y (t)

)
+

+ (−X(t), Y (t))
(
V
(k)
1

V
(k)
2

)
;

Y
(k)
λt
=

=
(
sin
(
y
(k)
λt

)
,− cos

(
y
(k)
ϕt

)
cos
(
y
(k)
λt

))(X(t)
Z(t)

)
+

+
(
X(t) cos

(
y
(k)
λt

)
,−X(t), Z(t) cos

(
y
(k)
ϕt

))
×

×



V
(k)
2

V
(k)
3

V
(k)
4


 ;

Y
(k)
rt = Z(t) +

(
y
(k)
rt , sin

(
y
(k)
λt

))(V (k)3
V
(k)
5

)
,

k = 1, 2.





(6)

Вектор ошибок измерений

Vt =
(
V
(1)
1 , V

(1)
2 , . . . , V

(2)
5

)′

имеет независимые гауссовские координаты с нуле-
вым средним и дисперсиями D{V (k)1 } = D{V (k)2 } =
= σ2ϕ, D{V (k)3 } = D{V (k)4 } = σ2λ, D{V (k)5 } = σ2r ,
k = 1, 2.

В разных вариантах формирование модели (6)
обсуждается в [20–22], где показано, что значения
псевдонаблюдений

Yt =
(
Y (1)ϕt

, Y
(1)
λt
, Y (1)rt

, Y (2)ϕt
, Y
(2)
λt
, Y (2)rt

)′

можно аппроксимировать, учитывая расположение
измерителей в начале координат, как

Y (k)ϕt
≈ 0; Y (k)λt

≈ 0;

Y (k)rt
≈ y(k)rt

sin
(
y
(k)
λt

)
, k = 1, 2. (7)

Смысл замены (аппроксимации) наблюде-
ний (5) псевдонаблюдениями (6) в том, что по-
следние зависят от оцениваемых координат ЛА ли-
нейно. В фильтре, таким образом, не потребуются
вычисления производной для линеаризации функ-
ции наблюдения, поскольку в модели наблюде-
ния (6) нужные матрицы входят линейно: коэф-
фициенты при Xt = (X(t), Y (t), Z(t))

′ и при Vt

вычисляются как функции «истинных» наблюде-
ний и используются в фильтре, а значения псевдо-
наблюдений вычисляются согласно (7).

3 Реализация расширенного
фильтра Калмана

Предложенные модели наблюдения (1), (5)
или (2), (5) в унифицированном виде можно за-
писать в виде:

Xt = �
(1)
t Xt−1 +�

(2)
t (Xt−1)Wt;

yt = ψ
(1)
t (Xt) + vt,

t = 1, 2, . . . , X0 = η .





(8)

Для этой модели уравнения РФК [2] с учетом линей-
ности�(1)t Xt−1, центрированности возмущенийWt

и vt и отсутствия диффузионного множителя у
ошибки vt принимают вид:

“Xt = �
(1)
t
�Xt−1;

“�
(2)
t = �

(2)
t ( “Xt) ;

“Kt = �
(1)
t
�Kt−1

(
�
(1)
t

)′
+ “�

(2)
t D{Wt}

(
“�
(2)
t

)′
;

�Xt = “Xt +Kt

(
yt − ψ

(1)
t

(
“Xt

))
;

“ψ
(1)
t =

∂ψ
(1)
t (X)

∂X

∣∣∣∣∣X =
“Xt;

Kt = “Kt

(
“ψ
(1)
t

)′(
“ψ
(1)
t
“Kt

(
“ψ
(1)
t

)′
+D{vt}

)−1
;

�Kt = “Kt −Kt
“ψ
(1)
t
“Kt.





(9)

Вычисление производной ∂ψ
(1)
t (X)/∂X, кото-

рая нужна для аппроксимации ковариации ошиб-
ки оценки на шаге коррекции, не составляет
труда, так как сводится к вычислению производ-
ных функций ϕ(x, y, z) = arctg (y/x), λ(x, y, z) =
= arctg (z/

√
z2 + y2) и r(x, y, z) =

√
x2 + y2 + z2.

причем производные существуют всюду, кроме
плоскости x = 0, т. е. почти наверное.

В методе линейных псевдонаблюдений предпо-
лагается, что вместо (8) модель системы принимает
вид:

Xt = �
(1)
t Xt−1 +�

(2)
t (Xt−1, yt−1)Wt;

Yt = ā
(1)
t (yt)Xt +ā

(2)
t (Xt, yt)Vt,

t = 1, 2, . . . , X0 = η.

Уравнения для yt не используются, а значения,
принимаемые yt, считаются известными. Таким
образом, для этой модели уравнения оценки РФК
принимают вид:
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“Xt = �
(1)
t
�Xt−1;

“�
(2)
t = �

(2)
t

(
�Xt, yt−1

)
;

“Kt = �
(1)
t
�Kt−1

(
�
(1)
t

)′
+ “�

(2)
t D{Wt}

(
“�
(2)
t

)′
;

�Xt = “Xt +Kt

(
yt −ā(1)t (yt) “Xt

)
;

“ā
(2)
t = ā

(2)
t

(
“Xt, yt

)
;

Kt = “Kt

(
ā
(1)
t (yt)

)′(
ā
(1)
t (yt) “Kt

(
ā
(k)
t (yt)

)′
+

+ “ā
(2)
t D{Vt}

(
“ā
(2)
t

)′)−1

;

�Kt = “Kt −Ktā
(1)
t (yt) “Kt.






(10)

Здесь получается наилучший вариант для вычис-
ления эвристической ковариации ошибки оценки
на шаге коррекции из-за линейности ā(1)t (yt)Xt,

заменившей ψ(1)t (Xt) в (8), так что ∂ψ(1)t (X)/∂X =

= ā
(1)
t (yt) и не зависит от прогноза “Xt. Ясно, что

цена вопроса в том, насколько точны приближе-
ния (7) и оценки предыдущего шага.

4 Начальная оценка

В описанной модели обычный РФК уже ока-
жется неработоспособным. Но оказывается, что
нестабильность его оценок здесь спровоцирова-
на не столько самим фильтром, сколько слишком
большой неточностью в определении начального
условия. Ситуацию, когда положение впервые
детектированного ЛА, которое описывается на-
чальным значением η, получает начальную оцен-
ку �X0 = E{η} с начальным качеством (точностью)
�K0 = D{η}, как минимум можно охарактеризо-

вать как ситуацию очень неточных и очень огра-
ниченных наблюдений. Эта или похожие ситуации
породили вполне самостоятельное небольшое на-
правление оценивания положения без фильтрации,
называемое локализацией. Обзор этого направле-
ния выходит за рамки статьи, ограничимся только
самым простым решением.

Итак, формально фильтры (9) и (10) должны ис-
пользовать начальные условияE{η}иD{η}, опреде-
ляемые распределением начального положения ЛА
XA ∼ R[20, 40], YA ∼ R[20, 40],ZA ∼ R[0,5; 1,5]. Так
и будет сделано в одном из экспериментов, чтобы
продемонстрировать один из вариантов нестабиль-
ности РФК. В других расчетах влияние слишком
неточного начального детектирования исключено
следующим образом.

Будем считать, что для начального положения
ЛА имеются измерения (5), т. е. детектирование
означает появление измерений y(k)ϕ0 , y(k)λ0

и y(k)r0 , k =
= 1, 2. Пренебрегая ошибками, будем считать, что

y(k)ϕ0 ≈ ϕ0 = arctg

(
YA
XA

)
;

y
(k)
λ0

≈ λ0 = arctg

(
ZA

|XA|
cos(ϕ0)

)
;

y(k)r0 ≈ r0 =
ZA

sin(λ0)
.

Отсюда нетрудно получить прямые оценки началь-
ного положения (с учетом XA > 0):

�X
(k)
A =

�ZA cos
(
y(k)ϕ0

)

tg
(
y
(k)
λ0

) ;

�Y
(k)
A = tg

(
y
(k)
ϕ0

)
�X
(k)
A ;

�Z
(k)
A = y

(k)
r0 sin

(
y
(k)
λ0

)
,






(11)

т. е. две простые оценки �X(k)0 , k = 1, 2. Поскольку их
точностные характеристики одинаковы, итоговую
оценку (ее можно назвать оценкой прямых измере-
ний) начального положения можно задать в виде

�X0 =
1

2

(
�X
(1)
0 +

�X
(2)
0

)
,

что отвечает методу наименьших квадратов. Не-
линейность наблюдений не позволяет вычислить
точно ковариацию ошибки такой оценки, но это
нетрудно сделать, выполнив компьютерное моде-
лирование. В результате начальная ковариация вы-
брана равной �K0 = diag{0,12; 0,12; 0,152} км2, т. е.
вместо отклонений порядка 6 км по координа-
там x, y и 300 м по координате z, соответст-
вующих моделируемому начальному распределе-
нию η, ошибкам заданы порядки 100 и 150 м
соответственно.

Отметим также, что простая оценка (11) может
непосредственно применяться в любой момент вре-
мени к измерениям y

(k)
ϕt , y(k)λt

и y(k)rt , k = 1, 2. Таким

образом, можно получить оценки ÷X(1)t и ÷X(2)t :

÷X(k)(t) =

÷Z(k)(t) cos
(
y(k)ϕt

)

tg
(
y
(k)
λt

) ;

÷Y (k)(t) = tg
(
y
(k)
ϕt

)
÷X(k)(t) ;

÷Z(k)(t) = y
(k)
rt sin

(
y
(k)
λt

)
, k = 1, 2,





(12)

а из них — фильтр прямых измерений

÷Xt =
1

2

(
�X
(1)
t + �X

(2)
t

)
.

Так что в рассматриваемой задаче вместо обыч-
ной тривиальной оценки, т. е. безусловного мате-
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матического ожидания E{Xt}, сравнивать точность
фильтрации надо не с безусловной ковариацией со-
стояния D{Xt}, а с точностью оценки ÷Xt.

5 Типовой расширенный
фильтр Калмана

Формальное качество фильтрации определя-
ет ковариационная матрица ошибки оценки
D{ �Xt−Xt}или ее след (аналогично для фильтра ÷Xt).
Для приближенного вычисления ковариации вы-
полняется компьютерное моделирование N = 1000
или 10 000 траекторий систем (1), (5) или (2), (5)
и фильтров (9), (10), (12). Качество оценки поло-
жения ЛА определяется величинами σ �X(t), σ�Y (t)
и σ �Z(t)— среднеквадратичными отклонениями для
оцениваемых координат X(t), Y (t) и Z(t) (диаго-
нальными элементамиD{ �Xt−Xt}). Компьютерное
моделирование дает

σ �X(t) ≈
(
E
{
( �X(t)−X(t))2

})1/2

(аналогично для σ�Y (t) и σ �Z(t), а также для фильт-
ра прямых измерений (12) σ ÷X(t), σ÷Y (t) и σ ÷Z(t)).
Здесь E{·} — статистическое среднее, вычисленное
по N смоделированным траекториям. Значения
этих функций в экспериментах иллюстрируют гра-
фики.

Обобщенную характеристику точности опреде-
ления положения дают величины

σ
(mean)
�X

=
1

1000

1000∑

t=1

σ �X(t)

(аналогично σ
(mean)
�Y

, σ
(mean)
�Z

и σ
(mean)
÷X

, σ
(mean)
÷Y

,

σ
(mean)
÷Z

) — отклонения, усредненные по времени

фильтрации t = 1, 1000. Эти величины объединены
в одной общей таблице.

Точность фильтрации

Раздел Модель–фильтр σ
(mean)
�X

σ
(mean)
�Y

σ
(mean)
�Z

σ
(mean)
÷X

σ
(mean)
÷Y

σ
(mean)
÷Z

Разд. 5, рис. 2
(1), (5) (без скачков),
полная информация – стандартный
РФК, N = 1000

84,4 81,9 69,8 73,13 73,29 101,92

Разд. 5, рис. 2
(1), (5) (без скачков),
полная информация – стандартный
РФК, N = 10 000

> 108 > 108 > 105 73,11 73,19 101,81

Подразд. 6.1,
рис. 3

(1), (5) (без скачков),
полная информация – РФК
псевдонаблюдений, N = 1000

35,84 36,39 10,60 73,13 73,29 101,92

Подразд. 6.2,
рис. 4

(1), (5) (без скачков),
полная информация, неточное
начальное условие – РФК
псевдонаблюдений, N = 1000

1603 1680 90 73,13 73,29 101,92

Подразд. 6.3,
рис. 5

(1), (5) (без скачков),
неполная информация – РФК
псевдонаблюдений, N = 1000

59,22 72,24 89,96 73,13 73,29 101,92

Подразд. 6.3,
рис. 5

(1), (5) (без скачков),
неполная информация – РФК
псевдонаблюдений, N = 10 000

59,29 74,69 89,81 73,13 73,29 101,92

Подразд. 6.4,
рис. 6

(2), (5) (скачки скорости),
неполная информация – РФК
псевдонаблюдений, N = 1000

60,41 64,65 91,60 74,11 74,07 103,31

Подразд. 6.4,
рис. 6

(2), (5) (скачки скорости),
неполная информация – РФК
псевдонаблюдений, N = 10 000

60,26 64,59 91,75 74,34 74,20 103,43

Подразд. 6.4
(2), (5) (скачки скорости),
полная информация – РФК
псевдонаблюдений, N = 1000

32,54 32,10 9,78 74,11 74,07 103,31

Подразд. 6.5,
рис. 7

(1), (5) (без скачков),
неточное задание дисперсий
шумов – РФК псевдонаблюдений,
N = 10 000

192,48 312,29 78,10 292,82 293,30 407,98
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Рис. 2 Базовый расчет, N = 10 000. Точность оценива-
ния для РФК (1 — σ �X ; 2 — σ�Y ; 3 — σ �Z) и для фильтра
прямых измерений (4 — σ ÷X ; 5 — σ÷Y ; 6 — σ ÷Z)

Рис. 3 Базовый расчет, N = 1000. Точность оценивания
для РФК линейных псевдоизмерений (1 — σ �X ; 2 — σ�Y ;
3 — σ �Z) и для фильтра прямых измерений (4 — σ ÷X ; 5 —
σ÷Y ; 6 — σ ÷Z)

В первом эксперименте тестируем стандартный
РФК сначала по пучку N = 1000 траекторий. По-
лученный результат (см. таблицу, первая строка)
позволяет предположить, что РФК работает, хотя
и не очень хорошо. Его оценка �Xt имеет смысл,
но хуже оценки ÷Xt, так как σ

(mean)
�X

> σ
(mean)
÷X

,

σ
(mean)
�Y

> σ
(mean)
÷Y

и только σ
(mean)
�Z

< σ
(mean)
÷Z

. Та-
ким образом, надо признавать, что РФК по сово-
купности проигрывает простой оценке, а значит,
демонстрирует нестабильность. Здесь важно от-
метить, что этот случай — плохой вариант неста-
бильности РФК, поскольку факт нестабильности
скрыт, его непросто обнаружить. Фильтр кажется
работающим, хотя смысла в нем нет.

Следующий эксперимент «разрушил» РФК
в этой модели полностью. Условия отличаются
от предыдущего лишь тем, что моделируется боль-
ший пучок из N = 10 000 траекторий. Результат,
который иллюстрирует рис. 2, означает, что РФК
не работает совсем, т. е. в пучке есть расходящиеся
оценки, а именно: РФК ближе к концу интервала
наблюдения в какой-то момент «взрывается».

«Взрывающиеся» траектории возникают при пе-
ресечении ЛА плоскости x = 0. При этом недо-
пустимого для фильтра нулевого значения у моде-
лируемых в дискретном времени траекторий нет,
так что условия вычисления производных не на-
рушаются. Но значения производных и точность
линеаризации при пересечении плоскости x = 0
падает настолько, что оценка «разваливается». Та-
ких траекторий в пучке N = 10 000 всего несколько
экземпляров и нет ни одной в пучке N = 1000.
Однако их наличие означает, что РФК нестаби-
лен, поскольку согласно формальному среднеквад-
ратичному критерию оценивания не обеспечивает
даже его конечность. Это другая и тоже заслужива-
ющая отдельного внимания особенность выбран-

ной базовой модели. Неприятность состоит в том,
что «взрывающихся» траекторий немного, но они
есть. При этом обнаружить их в пучке небольшого
размера не удается, что провоцирует ошибочный
вывод.

6 Нестабильность расширенного
фильтра Калмана по методу
линейных псевдонаблюдений

6.1 Эффективная фильтрация
для базовой модели

Неудачную работу стандартного РФК
в предыдущем эксперименте эффективно исправ-
ляет фильтр (10). Результат одинаков для N =
= 1000 и 10 000 траекторий. Его иллюстрирует
рис. 3 и третья строка таблицы. Этот результат
выделен, так как показывает работу действительно
эффективного фильтра: точность определения мес-
тоположения в разы выше, чем у фильтра прямых
измерений, что видно как на графике, так и на
обобщенных величинах.

6.2 Неточное начальное положение

Первый вариант изменения в базовой модели —
отказ от использования измерений y(k)ϕ0 , y(k)λ0

и y(k)r0 ,
k = 1, 2, т. е. расчет оценки начального положения
в виде �X0 = E{η}, �K0 = D{η}. Результат иллюстри-
рует рис. 4.

Как и в первом эксперименте, обнаружить
и утверждать, что РФК работает нестабильно, не
совсем просто. К примеру, фильтрация по коор-
динате z выполняется не так плохо: по графику
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Рис. 4 Неточное начальное условие, N = 1000. Точность
оценивания для РФК линейных псевдоизмерений (1 —
σ �X ; 2 — σ�Y ; 3 — σ �Z) и для фильтра прямых измерений
(4 — σ ÷X ; 5 — σ÷Y ; 6 — σ ÷Z)

этого не видно, но в таблице значение интегральной
оценки точности σ

(mean)
�Z

< σ
(mean)
÷Z

, и абсолютные
погрешности на последнем шаге отличаются зна-
чительно: σ �Z(6 мин) = 48,35, σ ÷Z(6 мин) = 75,07.
Также нельзя утверждать, что РФК дает расходящу-
юся оценку, поскольку взрывного роста на рис. 4
нет, РФК всего лишь ведет себя странно, наращи-
вая ошибку по мере приближения к цели. Неста-
бильность становится очевидной лишь при анализе
числовых значений точности: погрешность по ко-
ординатам x, y к концу интервала наблюдения до-
стигает 2 км, что, конечно, нельзя считать осмыс-
ленной оценкой фильтрации, хотя формально эти
величины и меньше безусловной ковариации моде-
лируемого состояния. Вклад в формирование такой
большой погрешности вносят не все траектории.
На большинстве траекторий РФК работает не хуже
фильтра прямых измерений после небольшого пе-
реходного периода, в течение которого ему удается
компенсировать б‚ольшую (относительно прямых
измерений) погрешность определения начального
положения, но есть 3%–4% траекторий, на кото-

рых фильтру сделать этого не удается. Тогда полу-
чаются «разваливающиеся» траектории, появление
которых приходится признать непрогнозируемым
и объявить в рассмотренном примере РФК неста-
бильным в целом.

6.3 Неполная априорная информация

Второй вариант изменения базовой модели —
исключение из наблюдений постоянной средней
скорости s. Согласно алгоритму РФК это пред-
положение требует замены в уравнениях фильтра s
на E{s} и дополнительного слагаемого D{s} в эм-
пирической ковариации “Kt. В рассматриваемой
модели с фильтром (10) и E{s} результаты расчета
иллюстрирует рис. 5.

Если начать с формальной величины в табли-
це, то и для пучка N = 1000, и для пучка N =
= 10 000 можно констатировать, что РФК работает,
но его качество ухудшилось. При этом преимуще-
ство все-таки есть, хотя и небольшое. Нестабиль-
ность фильтра обнаруживается только по рис. 5.
Для N = 1000 (см. рис. 5, а) ближе к концу интер-
вала слежения наблюдается некоторая «болтанка»
в точности оценки �Y (t), приводящая в конце к зна-
чительному проигрышу. Можно предположить, что
эту картину формирует единственная «особенная»
траектория и больше это не повторяется. Регуляр-
ность обнаруженной проблемы подтверждает экс-
перимент сN = 10 000на рис. 5, б. На этом графике
картина сглажена и показывает, что оценка �Y (t)
«разваливается» регулярно и начинается достаточ-
но далеко от конца интервала слежения, т. е. это
другая картина по сравнению с той, что обсужда-
лась в разд. 5 при пересечении траекторией ЛА
плоскости x = 0. Здесь «плохих» траекторий еще
меньше и они менее взрывные, σ�Y (6 мин) = 217,23
(N = 10 000) и σ�Y (6 мин) = 272,24 (N = 1000).

Рис. 5 Неизвестная средняя скорость: (а) N = 1000; (б) N = 10 000. Точность оценивания для РФК линейных
псевдоизмерений (1 — σ �X ; 2 — σ�Y ; 3 — σ �Z) и для фильтра прямых измерений (4 — σ ÷X ; 5 — σ÷Y ; 6 — σ ÷Z)
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Таким образом, и в этом примере РФК демон-
стрирует нестабильность, обнаружить которую по-
зволяет анализ функции σ�Y (t) и не позволяют ин-
тегральные характеристики точности из таблицы.

6.4 Скачкообразное изменение
средней скорости

Отличие этого примера от рассмотренного
в разд. 6.3 в замене модели движения на (2), т. е.
теперь неизвестный параметр s становится неиз-
вестной функцией s(t), кусочно-постоянной на ин-
тервалах средней длины 2 мин, так что на траекто-
риях будет примерно 2–4 изменения направления
движения. Естественно ожидать, что такое услож-
нение модели сделает работу фильтра сложнее и ре-
зультат хуже. По формальным характеристикам,
приведенным в таблице, так и есть: и фильтр пря-
мых измерений, и РФК дали результаты хуже, чем
в предыдущей модели, причем для обоих пучков:
N = 1000 и 10 000. Но, согласуясь с рассуждениями
предыдущего примера, можно видеть, что и здесь
РФК демонстрирует нестабильность. Это видно
на графиках рис. 6, а лучшее подтверждение —это
числовые значения: σ�Y (6мин) = 89,95 (N = 10 000)
и σ�Y (6 мин) = 79,99 (N = 1000) при условии, что
σ÷Y (6мин) = 55,20 (N = 10 000) иσ÷Y (6мин) = 57,68
(N = 1000).

Но эти же графики позволяют предположить,
что исследуемая более сложная модель со скачками
лучше для работы фильтра, потому что очевидна
разница в характере нестабильности, демонстриру-
емом рис. 5 и 6, т. е. хотя и в этом примере РФК
следует считать нестабильным, но характер неста-
бильности иной, чем в модели без скачков, менее
«взрывной». Чтобы эти рассуждения подытожить,
был выполнен еще один эксперимент в предполо-
жении наличия полной информации об s(t). Ре-
зультат, показанный в таблице, оказался лучше,

чем дал расчет подразд. 6.1, т. е. такое усложнение
модели действительно удобнее для работы фильтра.

6.5 Неточное задание
характеристик шума

В этом заключительном примере рассмотрено
влияние на фильтр неточной априорной информа-
ции о характеристиках шума в наблюдениях. Под
неопределенностью будем понимать только неточ-
ную информацию о дисперсиях ошибок измерений.
Сразу надо сказать, что для большей части вари-
антов задания такой априорной неопределенности
в отношении величин σϕ, σλ и σr РФК дает впол-
не приемлемые результаты, в целом количественно
близкие к результатам подразд. 6.1. Так, если вместо
σϕ, σλ и σr использовать оценки сверху σϕ < ›ϕ,
σλ < ›λ и σr < ›λ, то даже для очень завышен-
ных значений›ϕ, ›λ и›r получаются приемлемые
результаты. Более того, даже если моделировать
неопределенность в другую сторону, т. е. использо-
вать вместо точных значений σϕ, σλ и σr величины
меньшие, то и так «развалить» РФК не удается.
Достичь цели и показать картину нестабильности
РФК получается только на очень значительных от-
клонениях. Итак, в примере этого раздела ошибки
измерений моделировались в соответствии с задан-
ными и во всех примерах одинаковыми σϕ, σλ и σr,
а фильтру указывались значения в 4 раза меньшие,
т. е. как будто средние отклонения шумов равны
σϕ/4, σλ/4 и σr/4. Результат расчета иллюстрирует
рис. 7.

На графике видна проблема: величины σ �X(t),
σ�Y (t) и σ �Z(t) возрастают с течением времени, т. е.
с приближением ЛА к наблюдателю (первые две —
на большей части траектории, третья — примерно
с пятой минуты). Можно еще указать на недопусти-
мо большие значенияσ�Y (t) в заключительной части

Рис. 6 Изменяющаяся скачком средняя скорость: (а) N = 1000; (б) N = 10 000. Точность оценивания для РФК
линейных псевдоизмерений (1 — σ �X ; 2 — σ�Y ; 3 — σ �Z) и для фильтра прямых измерений (4 — σ ÷X ; 5 — σ÷Y ; 6 — σ ÷Z)
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Рис. 7 Неточное описание шумов в наблюдениях. Точ-
ность оценивания для РФК линейных псевдоизмерений
(1 — σ �X; 2 — σ�Y ; 3 — σ �Z) и для фильтра прямых измерений
(4 — σ ÷X ; 5 — σ÷Y ; 6 — σ ÷Z)

интервала наблюдения (здесь есть сходство с пре-
дыдущими двумя примерами, но есть и отличие:
это не несколько «развалившихся» траекторий, это
регулярная картина точности на каждой траекто-
рии).

Несомненно, требовать от фильтра хорошей ра-
боты с такой ошибкой в модели как минимум не
вполне корректно. Но все-таки фильтр прямых из-
мерений справился, его очень неточные, но впол-
не адекватные искажению модели результаты есть,
и их нельзя игнорировать. Так что и здесь РФК надо
признать нестабильным. Этот пример здесь важен
еще и потому, что картина нестабильности сильно
отличается от тех, что были в предыдущих экс-
периментах, поэтому этот пример важен как еще
один, особый, шаблон нестабильного поведения
РФК, который надо рекомендовать проверять при
практическом применении этого фильтра.

7 Заключение
Подводя итог представленным результатам, на-

помним поставленную в начале цель. На базе
одной модели стохастической системы наблюдения
собраны разные варианты нестабильной работы
самого популярного субоптимального фильтра —
РФК. Исследование выполнено для модификации,
известной как фильтр линейных псевдоизмерений.
Эта работа была инициирована тем обстоятель-
ством, что, хотя многими исследователями все-
гда констатируется нестабильная работа РФК,
научиться выявлять эту нестабильность затрудни-
тельно, так как большинство источников ограни-
ваются констатацией факта без деталей. Здесь
обсуждались именно детали и были предъявлены
несколько принципиально отличающихся кар-
тин, качественно характеризующих нестабильность
РФК.
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Moscow 119333, Russian Federation

Abstract: The paper examines the variants of unstable operation of the extended Kalman filter (EKF). The set of
experiments was performed with a typical model of a stochastic observation system. The motion of an autonomous
object with a constant average velocity was modeled under conditions of uncontrolled velocity perturbations
forming a chaotic trajectory with a regular target direction. Observations of two independent complexes consist of
measurements of bearing angles (azimuth and elevation angle) and range. The estimation of the object’s position is
performed by the basic EKF and its modification using the method of linear pseudoobservations. The basic EKF
turns out to be unstable in the initial model. The EKF uses the method of pseudomeasurements to provide a stable
assessment of the position with high accuracy. The purpose of the experiments is to show which changes in the
monitoring system model led to unstable operation of this EKF modification. For this purpose, 4 scenarios have
been proposed, calculated, and analyzed: (i) inaccurate detection of the initial position; (ii) inability to identify
the speed parameters in advance; (iii) movement with an abrupt change in speed parameters while maintaining
the direction of the target; and (iν) inaccurate setting of statistical characteristics (covariance) of measurement
errors. In each of the scenarios, the EKF turns out to be unstable, forming an estimate of the object’s position
with unacceptable accuracy. At the same time, the nature of instability and the behavior of the EKF estimates are
different as demonstrated by numerical and graphical calculation results.

Keywords: stochastic filtering; discrete stochastic observation system; extended Kalman filter (EKF); EKF by the
method of linear pseudomeasurement
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АНАЛИЗ ЗАДЕРЖЕК В СЕТЯХ ИНТЕГРИРОВАННОГО ДОСТУПА

И ТРАНЗИТА ДЛЯ СЦЕНАРИЯ РАЗВЕРТЫВАНИЯ С ЛИНЕЙНОЙ

ТОПОЛОГИЕЙ∗

Е. А. Мачнев1, У. К. Морозова2, В. А. Бесчастный3, В. С. Шоргин4, Ю. В. Гайдамака5

Аннотация: Технология интегрированного доступа и транспорта (Integrated Access and Backhaul, IAB),
стандартизованная консорциумом 3GPP, позволяет значительно удешевлять развертывание сетей 5G.
В работе исследуется задержка передачи в IAB-сетях, работающих в миллиметровом диапазоне длин
волн, в условиях плотной городской застройки. Предложенная в работе модель системы позволяет прово-
дить анализ буферизации на промежуточных узлах-ретрансляторах с использованием теории массового
обслуживания и включает параметризацию радиоканала с помощью методов стохастической геометрии.
Проведенный численный эксперимент показал, что производительность системы с точки зрения задерж-
ки пакетов и коэффициента использования ресурсов определяется в основном условиями дорожного
трафика, а не площадью зоны покрытия.

Ключевые слова: 5G New Radio; пропускная способность; сеть интегрированного доступа и транзита
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1 Введение
Современные системы 5G New Radio (NR) [1],

функционирующие в микроволновом и миллимет-
ровом диапазонах, призваны обеспечить высокую
пропускную способность на интерфейсе радиодо-
ступа. Однако на практике при развертывании
сетей преимущественно ограничиваются техноло-
гиями микроволнового диапазона частот. Это
обусловлено сложными условиями распростране-
ния mmWave-сигналов, чувствительных к динами-
ческому и статическому затуханию, а также к вы-
соким потерям при распространении [1, 2]. Для
нивелирования этих эффектов требуется уплотне-
ние сетей радиодоступа, что сопровождается значи-
тельными капитальными затратами для операторов
мобильной связи.

Одним из приоритетных сценариев, требующих
высокой плотности радиодоступа, представляются
уличные и дорожные условия развертывания сетей.
В таких случаях базовые станции (БС) 5G NR необ-
ходимо размещать вдоль дорог для обслуживания
не только пассажиров, но и самих транспортных
средств (ТС), в том числе в задачах автономного
транспорта. Из-за высоких потерь при распростра-
нении сигнала требуется плотное размещение БС
для обеспечения непрерывного покрытия. В связи

с этим 3GPP в релизах 16 и 17 предложил архитекту-
ру интегрированного доступа и транзита (IAB) [3, 4]
как экономически эффективный способ уплотне-
ния сети. Использование вместо БС недорогих ре-
трансляторов — IAB-узлов — позволяет увеличить
число точек доступа и при этом сократить затраты.

Особенность технологии IAB заключается в ор-
ганизации многозвеньевой связи, характерной для
будущих систем связи 5G/6G [3]. При этом в уз-
лах IAB совмещается функциональность доступа
и транзита, при которой весь доступный спектр ра-
диочастот используется как для подключения, так
и для транзитной передачи. Такая функциональ-
ность требует полудуплексного режима передачи
данных, что значительно усложняет задачу опти-
мизации работы сети. Исследования показывают,
что, несмотря на указанные ограничения, техно-
логия IAB может существенно увеличить площадь
покрытия и повысить пропускную способность се-
ти [1, 5].

Одним из ключевых показателей эффектив-
ности сетей IAB, особенно в сценариях развер-
тывания вдоль автомагистрали, служит задержка.
В отличие от показателей покрытия и пропускной
способности, задержкам до настоящего времени
уделялось недостаточно внимания. Несмотря на
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Анализ задержек в сетях интегрированного доступа и транзита для сценария развертывания с линейной топологией

то что сети 5G пакетно-ориентированные, моде-
ли оценки характеристик в основном ограничива-
ются сеансовым уровнем. При этом существует
очевидный баланс между задержкой и пропускной
способностью: увеличение числа IAB-узлов или
расстояний между ними ведет к росту задержки
и снижению общей производительности.

В данной работе проводится анализ задержек
в IAB-сетях с учетом полудуплексного режима
и особенностей распространения mmWave-сигна-
лов. Для этого с помощью аппарата стохастической
геометрии [6] и теории массового обслуживания [7,
8] построена модель, учитывающая пульсирующий
характер трафика [9] в соседних временн‚ых ин-
тервалах передачи (Transmission Time Interval, TTI),
характерный для систем 5G NR. Приводятся ре-
зультаты численного эксперимента, демонстриру-
ющие влияние числа IAB-узлов, условий дорож-
ного трафика, интенсивности поступления пакетов
от абонентских устройств (АУ) и других факторов.
Основные научные результаты работы:

– разработан математический аппарат для оцен-
ки задержки пакетов и пропускной способ-
ности в IAB-сетях в зависимости от параметров
системы;

– показано, что производительность цепочки
IAB-узлов ограничивается транзитным кана-
лом, при этом:

(1) параметры дорожного трафика существенно
влияют на оптимальные параметры развер-
тывания;

(2) средняя задержка резко увеличивается с по-
рядковым номером IAB-узла в цепочке;

(3) даже широкая полоса частот в диапазоне
mmWave может быть недостаточна для под-
держки более 2–3 узлов в одной цепочке.

2 Системная модель
Рассматриваемая архитектура развертывания

системы 5G NR с использованием технологии IAB
представлена на рис. 1, где на один IAB-донор опи-
раются одновременно две IAB-цепочки в разных
направлениях движения. IAB-донор служит узлом,
подключенным к опорной сети и имеющим наи-
большую пропускную способность, в то время как
IAB-узлы подключены к донору и между собой по
радиоинтерфейсу и выполняют роль ретранслято-
ров пользовательских данных. В работе анализи-
руется уличное развертывание сети, при котором
каждый IAB-донор обслуживает N последователь-
но соединенных ретрансляторов (IAB-узлов), при
этом к каждому узлу, включая донор, могут под-
ключаться АУ, если они находятся в радиусе зоны
покрытия того или иного узла. Предполагается, что
АУ всегда подключаются к ближайшему IAB-узлу,
так как он дает наибольшую оценку мощности при-
нимаемого сигнала. Таким образом формируется
линейная структура — цепочка от АУ к IAB-донору
в случае восходящего потока данных. В качестве
базового сценария рассматривается многополосная
автомагистраль с несколькими полосами в каждом
из направлений.

Для улучшения покрытия предполагается, что
IAB-узлы размещаются по разным сторонам до-
роги, как показано на рис. 1. Расстояние меж-
ду узлами, обозначаемое как dM , вычисляется
на основе модели распространения радиосигнала,

Рис. 1 Сценарий развертывания IAB-сети
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представленной ниже, с таким расчетом, чтобы ис-
ключить наличие «белых пятен» в зоне покрытия.
Высоты антенн у IAB-доноров и промежуточных
узлов считаются одинаковыми и равными hA.

Предполагается использование плоских антен-
ных решеток с коэффициентами усиленияGB иGU

на БС и АУ соответственно. Согласно подходу,
предложенному в работах [10, 11], в качестве мо-
дели диаграммы направленности антенны исполь-
зуется коническая модель, в которой ширина луча
совпадает с шириной угла на уровне половинной
мощности (Half-Power Beamwidth, HPBW). Сред-
ний коэффициент усиления в пределах HPBW зада-
ется выражением [12]

GB,U =
1

θ+3 dB − θ−3 dB

θ+
3 dB∫

θ−

3 dB

sin(N(·)π cos(θ)/2)

sin(π cos(θ)/2)
dθ ,

гдеN(·)— число антенных элементов в соответству-
ющей плоскости; θ+3 dB и θ−3 dB — верхняя и нижняя
границы угла на уровне −3 дБ.

В данной работе используется стандартизован-
ная модель потерь на распространение Urban Mi-
cro, рекомендованная 3GPP [13]. Согласно этой
модели, затухание сигнала в состоянии прямой ви-
димости на расстоянии y между антеннами описы-
вается следующим выражением:

LdB(y) = 10
2fC+3,24yζ , (1)

где fC — несущая частота; ζ = 2,1 — показатель
степени затухания в состоянии прямой видимости.
Кроме того, в модели учитывается постоянный до-
полнительный затухающий фактор в 15 дБ, обуслов-
ленный прохождением сигнала сквозь кузов авто-
мобиля [14].

Выражение (1) может быть преобразовано к ли-
нейной форме AMy−ζ , где коэффициентыAM и ζ
определяются следующим образом:

AM = 10
2fM,c+3,24; ζ = 2,1.

С учетом дополнительного затухания модель (1)
принимает вид:

L(y) = 102fC+3,24+ε0/10y−ζ ,

где ε0 соответствует постоянному значению потерь
в децибелах (например, 15 дБ из-за кузова автомо-
биля), приведенному к линейной шкале.

Таким образом, мощность принимаемого сиг-
нала на АУ можно определить как

S(y) =
PGBGUL(y)

N0RW +MI
,

где P — мощность передающей антенны БС; N0 —
тепловой шум;BW — ширина полосы пропускания;
MI — запас помехоустойчивости. В работе оцен-
ка мощности принимаемого сигнала используется
для расчета предельной дистанции связи, т. е. зоны
покрытия БС, при заданном минимальном значе-
нии Smin.

Рассматривается полудуплексная архитектура
IAB, рекомендованная для внедрения в сетях 5G
согласно [3]. Поскольку используется миллимет-
ровый диапазон длин волн (диапазон FR2), пред-
полагается организация полудуплексной связи на
основе разделения времени (Time-Division Duplex),
при котором восходящая и нисходящая передачи
осуществляются в одной и той же полосе частот.
Полудуплекс в таких системах оказывается предпо-
чтительной схемой по сравнению с дуплексом [1]
по причине высокой мощности интерферирующих
сигналов, создаваемых соседними узлами, а значит,
и потери качества канала.

Базовой единицей времени в модели считается
один подкадр длительностью 1 мс, что соответству-
ет интервалу передачи (TTI) в системах 5G NR [15].
Физический уровень 5G NR допускает динамиче-
ское распределение этих символов между восходя-
щей и нисходящей передачами в зависимости от
текущих потребностей. Буферизация пакетов осу-
ществляется на уровне управления доступом к сре-
де. Благодаря высокой пропускной способности
диапазона mmWave и особенностям полудуплекс-
ной передачи, объем буфера считается бесконеч-
ным.

С учетом полудуплексных ограничений для сети
IAB используется модель планирования передачи,
состоящая из пяти фаз, происходящих в рамках
одного TTI на каждом из узлов цепочки, включая
донор.

Фаза 1 — прием пакетов от соседних узлов. Паке-
ты от IAB-донора могут быть адресованы следу-
ющему узлу в цепочке или АУ, подключенному
к данному IAB-узлу.

Фаза 2 — передача накопленных пакетов сосед-
ним IAB-узлам и подключенным АУ.

Фаза 3 — повторный прием пакетов, но только
от донорского или предыдущего по цепочке
IAB-узла; пакеты могут быть предназначены
как для АУ, так и для следующего по цепочке
IAB- узла.

Фаза 4 — передача пакетов исключительно под-
ключенным АУ на всех узлах, при этом обмен
пакетами между IAB-узлами не осуществля-
ется.

Фаза 5 — прием пакетов от подключенных АУ.
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Параметры дорожного трафика

Сценарий Скорость движения, км/ч Расстояние между автомобилями, м
Затор 20 10
Нормальный трафик 60 30
Шоссе 120 60

В предложенной фазовой модели предполага-
ется фиксированное разделение времени на фазы
(каждой фазе соответствует свой временной интер-
вал), ответственные за восходящую и нисходящую
передачу в рамках одного временн‚ого слота. При
этом в работе исследуется только направление вос-
ходящей передачи, т. е. от АУ к IAB-донору.

Рассматриваемая услуга соответствует режиму
расширенного мобильного широкополосного до-
ступа (Enhanced Mobile Broadband), определенному
в [16]. В каждой полосе движения расположе-
ние АУ соответствует однородному одномерному
пуассоновскому точечному процессу [17] с пара-
метром γ АУ/м. Для каждого АУ используется
модель трафика FTP Model 3, стандартизированная
в [18], которая предполагает фиксированный раз-
мер пакета (0,5 МБ) и интенсивность поступления
пакетов λF .

Пакеты накапливаются в буферах АУ, проме-
жуточных IAB-узлов и IAB-донора на всех фазах
работы, за исключением тех, где происходит пере-
дача в исходящем направлении.

Для моделирования различных дорожных усло-
вий, влияющих на характеристики входящего тра-
фика, рассматриваются три сценария: затор (до-
рожная пробка), нормальный поток и шоссе
(высокоскоростная автомагистраль), приведенные
в таблице. Поскольку временной слот в сетях 5G
имеет длину не более 1 мс, предполагается, что
рассматриваемые скорости ТС не приводят к суще-
ственным изменениям качества канала с обслужи-
вающим IAB-узлом, так как смещение АУ в течение
слота составляет не более 35 см.

Основное отличие между сценариями заключа-
ется в плотности транспортного потока, которая
определяется расстоянием между ТС dI . Другими
параметрами модели служат число полос движе-
ния Nl и средняя длина автомобиля dV .

Целью настоящего исследования ставится ко-
личественная характеристика производительности
АУ, расположенных в ТС и ассоциированных с IAB-
узлами, размещенными вдоль дороги.

Основное внимание уделяется средней задержке
доставки пакета как в восходящем, так и в нисходя-
щем направлениях. Задержка анализируется в зави-
симости от ключевых параметров системы: числа
IAB-узлов, их радиуса покрытия, интенсивности
трафика от АУ, долей ресурсов, выделяемых на вос-

ходящую и нисходящую передачи, и других факто-
ров. Также рассматривается коэффициент исполь-
зования ресурсов, определяющий эффективность
загрузки радиоинтерфейса при заданных парамет-
рах трафика и архитектуры сети.

3 Модель оценки
характеристик сети

В системах 5G NR единицей планирования вы-
ступает TTI — временной интервал длительностью
– = 1 мс, который в работе рассматривается как
продолжительность такта работы системы. В каж-
дом таком интервале АУ сообщают о своих потреб-
ностях в передаче данных IAB-донору или узлам.
Процессы поступления и обслуживания пакетов
в системе имеют пачечный характер, поскольку за
один такт в систему поступают пакеты от несколь-
ких АУ, а далее в соответствующей фазе транзита
обработанные пакеты перенаправляются на сле-
дующий узел в цепочке. В условиях высо-
ких скоростей передачи данных, характерных для
mmWave-диапазона, IAB-узлы с полудуплексными
ограничениями используют большие буферы для
временного хранения пакетов, ожидающих предо-
ставления радиоканала.

Таким образом, для анализа производитель-
ности транзитного IAB-узла используется система
массового обслуживания с одним прибором, не-
ограниченной очередью и групповыми входящим
и обслуживаемым потоками с переменной длиной
групп — модель Geo[1:X]|Geo[1:Y ]|1|∞ [7]. Пакеты
поступают в начале временн‚ого такта с вероятно-
стью a; с дополнительной вероятностью �a = 1 − a
поступления не происходит. В каждый такт может
поступать до A заявок и обслуживаться до B за-
явок в зависимости от числа пакетов в буфере, при
этом значенияA иB определяются ограничениями
полудуплексного режима. Канал предоставляется
для передачи [4] в нужном направлении с вероят-
ностью b; соответственно, с дополнительной веро-
ятностью �b = 1− b канал используется на такте для
передачи в других направлениях.

Поступление и обслуживание групп заявок про-
изводится в режиме «раннее поступление, позднее
обслуживание», т. е. прием группы заявок происхо-
дит в начале такта, а обслуживание — в конце, как
показано на рис. 2.
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Рис. 2 Временная диаграмма событий в системе

Случайное число пакетов в IAB-узле в момент
непосредственно перед окончанием такта модели-
руется как цепь Маркова (ЦМ) {SQ(n), n ≥ 1}
с дискретным пространством состояний SQ(n) ∈
∈ {0, 1, . . .}, где шаг ЦМ соответствует такту в систе-
ме IAB. Заданы распределения вероятностей разме-
ров групп поступающих и обслуживаемых пакетов
{li, i = 1, A} и {hi, i = 1, B} соответственно. Также
для компактной записи введем обозначение Hi =
=
∑B

j=i hj — вероятность того, что длина обслужи-
ваемой группы не менее i заявок.

Элементы матрицы Q = [qij ]I,j≥0 вероятностей
переходов ЦМ SQ(n) за один шаг имеют вид:

qij =






�a+

A∑

k=1

alkbHk, i = j = 0 ;

alA�b, i ≥ 0, j = i+A ;

�a�b+
A∑

k=1

alkbhk, i ≥ 1, j = i ;

alj−i
�b+

A−j+i∑

k=1

alj−i+kbhk,

0 ≤ i < j < A+ i ;

�abHi +

(A,B−i)∑

k=1

alkbHi+k,

1 ≤ i < B, j = 0 ;

�abhi−j +

(A,B−i+j)∑

k=1

alkbhi−j+k,

0 < j < i < j +B ;

0, в остальных случаях.

В ограничениях, обеспечивающих существова-
ние стационарного режима [7],

ρ =
a�l

b�h
< 1 ,

где �l =
∑A

i=0 ili и �h =
∑B

i=0 ihi — среднее чис-
ло поступающих и обслуженных за такт паке-
тов соответственно, система уравнений равнове-
сия pT = pTQ с условием нормировки

∑∞
i=0 p1 = 1

позволяет получить стационарное распределение
p = (p0, p1, . . .) вероятностей состояний ЦМ SQ(n)
в виде производящей функцииP (z) =

∑∞
i=0 piz

i [7]:

P (z)=

(
B−1∑

i=0

piDi −
B∑

i=1

1

zi Ci

i−1∑

k=0

pkz
k

)/(
1−C−

− a�bL(z)− ab

A−1∑

i=1

zi
A∑

k=i+1

lkhk−i −
B∑

i=1

1

zi Ci

)
. (2)

Здесь pi = {SQ(n) = i} — стационарные вероят-

ности ЦМ SQ(n); L(z) =
∑A

i=1 liz
i — производя-

щая функция распределения длины поступающей
группы; коэффициенты Di, Ci и C определяют-
ся через параметры поступления и обслуживания
следующим образом:

Di = �abHi+1 +

min(A,B−i)∑

k=1

alkbHi+k+1 ;

Ci = �abhi +

min(A,B−i)∑

k=1

alkbhi+k ;

C = �a�b+

A∑

k=1

alkbhk .

Применив теорему Руше, можно получить сис-
тему уравнений
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



B−1∑

i=0

piDi −
B∑

i=1

1

zi
j

Ci

i−1∑

k=0

pkz
k
j = 0 ;

P (1) = 1 .

где zj, j = 1, B − 1, — корни знаменателя в (2) при
|zj | < 1. Решение системы уравнений позволяет
найти стационарное распределение вероятностей
p = (p0, p1, . . .) состояний ЦМ SQ(n).

В работе рассмотрены два ключевых показате-
ля эффективности системы: случайная величина D
задержки передачи одного пакета и доля исполь-
зуемого радиоресурса U на IAB-узле. Среднюю
задержку E[D] предложено оценивать через число
тактов, необходимых для обслуживания заявок из
очереди и среднего числа поступивших в очередном
такте заявок, в следующем виде:

E[D] = –

∞∑

i=0

pi

⌈
i+ a�l

b�h

⌉
.

Поскольку пропускная способность напрямую
зависит от доступного радиоресурса в физической
системе, рассчитываем долю используемого ресур-
са как долю занятой средней пропускной способ-
ности системы в виде, которая не может превосхо-
дить единицу:

E[U ] =

∞∑

i=0

pimin

(
i+ a�l

b�h
, 1

)
.

4 Численный эксперимент

Согласно модели трафика FTP3 [18] предпола-
гается, что пакеты данных размером SP = 0,5 МБ

отправляются АУ в среднем каждые 30 мс. В пе-
ресчете на усредненную скорость передачи данных
в радиоканале это составляет 133 Мбит/с, что может
оказаться чрезмерным даже для современных сце-
нариев развертывания. В качестве минимальной
схемы модуляции и кодирования (СМК) [19] вы-
брана схема 12 (модуляция 64 QAM, минимальное
значение отношения сигнал/шум Smin = 14,22 дБ,
спектральная эффективность 3,9023 бит/с/Гц). По-
скольку в работе рассматривается полоса частот
шириной FB = 400 МГц, а расположение АУ
предполагается равномерным, средняя спектраль-
ная эффективность передачи данных в зоне по-
крытия IAB-узла составляет приблизительно ES =
= 4,72 бит/с/Гц. В пересчете доступной полосы
частот на скорость передачи данных получаем B =
= –ESFB/SP ≈ 7. При этом среднее число АУ
в зоне покрытия рассчитывается с помощью пре-
дельной дистанции покрытия DM для выбранной
СМК M , т. е. A = γD12 = 0,013 · 156 ≈ 2. Так-
же предполагается, что все АУ передают данные
с одинаковой скоростью и при этом каждому из
них выделяется доля радиоресурса, необходимая
для поддержания этой скорости.

На рис. 3, а для цепочки изN = 3 узлов показано
влияние требуемой скорости трафика для всех АУ
в сети (при расчете варьировался размер пакета) на
задержку на ближайшем IAB-узле, а также сквозная
задержка для всей цепочки. Стоит отметить, что на-
грузка от предшествующего (i−1)-го узла в цепочке
рассчитывается как Ai = Bi−1Ei−i[U ] и суммирует-
ся с нагрузкой i-го узла от ассоциированных с ним
АУ. На рис. 3, б показана эффективность исполь-
зования ресурсов первого и последнего IAB-узлов
в цепочке.

Рис. 3 Зависимость средней задержки передачи (а) и доли используемого ресурса на IAB-узлах (б) от требуемой
скорости передачи данных: 1— шоссе; 2 — нормальный трафик; 3— затор; пустые значки — 1 узел; залитые значки —
3 узла

ИНФОРМАТИКА И ЕЁ ПРИМЕНЕНИЯ том 19 выпуск 4 2025 31



Е. А. Мачнев, У. К. Морозова, В. А. Бесчастный и др.

Как видно из полученных результатов, огра-
ничения на требуемую скорость передачи данных
существенно влияют на среднюю задержку. В то же
время скорость передачи данных, поддерживаемая
при достаточно низкой задержке, намного меньше,
чем рекомендованная консорциумом 3GPP в моде-
ли трафика FTP3. Даже для 1-го узла в цепочке ско-
рость выше 60 Мбит/с поддерживается только на
автомагистралях и в условиях нормального дорож-
ного движения без пробок. Таким образом, можно
сделать вывод, что даже при использовании мак-
симальной полосы пропускания канала в 400 МГц,
доступной в диапазоне mmWave FR2, достижение
требований к скорости передачи данных 3GPP оста-
ется сложной задачей при реалистичном разверты-
вании IAB.

5 Заключение
Технология IAB представляет собой вариант

экономичного развертывания систем 5G NR в диа-
пазоне FR2. Анализ производительности и опти-
мизация таких систем возможны только в особых
случаях, когда топология фиксированная. В данной
работе с использованием инструментов стохастиче-
ской геометрии и теории массового обслуживания
построена математическая модель для анализа про-
изводительности и численной оптимизации до-
рожных IAB-систем, размещаемых вдоль улиц
и магистралей, что представляет собой один из
практических примеров применения рассматрива-
емой технологии.

Одним из возможных решений для повышения
производительности в условиях высокой плотности
дорожного движения представляется ограничение
на использование низких СМК за счет соответству-
ющего сокращения расстояния между IAB-узлами
и АУ. Также показано, что достижение требований
к скорости передачи данных, предъявляемых 3GPP,
остается сложной задачей при реалистичном раз-
вертывании IAB-систем.

Разработанная модель позволяет определять па-
раметры развертывания IAB-системы, позволя-
ющие удовлетворять заданным ограничениям на
задержки при заданном наборе значений парамет-
ров.

В качестве дальнейших исследований планиру-
ется рассмотреть задачу поиска оптимального взаи-
морасположения IAB-узлов в сети для удовлетворе-
ния высоких требований современных приложений
к передаче данных.

Авторы выражают благодарность д.ф.-м.н. Ра-
зумчику Р. В. за советы по работе с дискретными
системами.
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ОБ ОДНОЙ ЭВРИСТИЧЕСКОЙ ДИСПЕТЧЕРИЗАЦИИ

ДЛЯ ДВУХФАЗНЫХ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ

ПО ЗАПАЗДЫВАЮЩЕЙ ИНФОРМАЦИИ ОБ ИХ СОСТОЯНИИ∗

М. Г. Коновалов1, Р. В. Разумчик2

Аннотация: Заявки поступают по рекуррентному потоку в двухфазную систему массового обслуживания
(СМО). Первая фаза характеризует индивидуальную задержку заявки, а вторая — непосредственное
обслуживание на одном из N одинаковых параллельных серверов с очередью неограниченной емкости.
В момент поступления заявки диспетчер должен принять решение, какой из серверов будет ее обслужи-
вать. Диспетчер располагает определенной априорной статической информацией о системе и о входящем
потоке, однако динамическая информация об очередях на серверах поступает к нему с задержкой. Пред-
ложена эвристическая процедура выбора серверов, которая использует запаздывающую информацию,
а также предысторию собственных решений диспетчера. Алгоритм основан на комбинации двух приемов,
часто используемых в задачах диспетчеризации: резервирования серверов за заявками определенной дли-
ны и предпочтительного выбора серверов с наименьшей очередью. Предложенная диспетчеризация
может быть легко реализована на практике без реконструкции существующего аппаратного обеспече-
ния. Приведены численные результаты сравнения новой стратегии с наиболее распространенными на
практике алгоритмами.

Ключевые слова: системы с параллельным обслуживанием; диспетчеризация; управление нагрузкой;
запаздывающая информация; резервирование
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1 Постановка задачи

Рассматривается описанная в [1] модель частич-
но наблюдаемых стохастических систем с парал-
лельным обслуживанием в виде двухфазной СМО.
Первая фаза представляет собой бесконечнолиней-
ную систему типа •/GI/∞, а вторая состоит изN ≥
≥ 2 одинаковых параллельно и независимо функ-
ционирующих СМО типа •/GI/∞ с дисциплиной
обслуживания очереди FIFO (first in, first out) (про-
нумерованных числами от 1 до N без повторений).
Предполагается, что время, затрачиваемое заявкой
на переход с фазы на фазу, равно нулю3. Заявки
каждого изK ≥ 1независимых случайных потоков,
поступающих в систему, обслуживаются последова-
тельно на одном из приборов первой фазы, затем —
в одной из СМО второй фазы. Времена обслужи-
вания на первой и второй фазах независимы, не
зависят от входящего потока и имеют произволь-
ные распределения. Для каждой заявки в момент
ее поступления диспетчером (мгновенно) должно
быть принято решение о том, в какой из СМО вто-

рой фазы ей надлежит обслуживаться. Если заявка
поступила в момент t, то для принятия решения до-
ступна информация лишь о распределениях исход-
ных величин, о предыдущих принятых решениях
(включая моменты поступления и размеры заявок),
о текущем числе заявок на первой фазе и нако-
нец о числе заявок в каждой СМО второй фазы
в моменты [t/–]–, ([t/–] − 1)–, ([t/–] − 2)–, . . . , 0
(– > 0). В указанных условиях задача заключается
в нахождении правила принятия решений (диспет-
черизации), которое минимизирует стационарное
среднее время V пребывания заявки на второй фазе
(среднего времени отклика).

2 Обзор литературы

Аналитический разбор стохастических моделей,
обладающих описанными в предыдущем разделе
особенностями4, чрезвычайно затруднен. Этим
объясняется сравнительно небольшое число опуб-

∗Работа выполнялась с использованием инфраструктуры Центра коллективного пользования «Высокопроизводительные вычис-
ления и большие данные» (ЦКП «Информатика») ФИЦ ИУ РАН (г. Москва).

1Федеральный исследовательский центр «Информатика и управление» Российской академии наук, mkonovalov@frccsc.ru
2Федеральный исследовательский центр «Информатика и управление» Российской академии наук, rrazumchik@frccsc.ru
3Если оно отлично от нуля, но не случайно и одно и то же для всех типов потоков, то с качественной точки зрения результаты

статьи остаются в силе.
4Из сравнительно недавних работ, которые касаются и рассматриваемой в этой статье модели, и математической теории массового

обслуживания, отметим [2–6].
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ликованных к настоящему времени научных работ
в этой области исследований.

Кратко состояние исследований к 2019 г. оха-
рактеризовано в короткой заметке [7]. Так, в [8, 9]
были получены некоторые результаты о поведении
и способах повышения производительности моде-
лей рассматриваемого типа при стратегиях JSQ(d)
(Join the Shortest Queue) и JSeQ(d) (Join the Short-
est expected Queue), использующих оценки длин
очередей1. В [10] были предложены некоторые
специальные, но близкие по смыслу к рассматри-
ваемой в этой статье, постановки задач, в которых
(в условиях большой загрузки) удается аналитиче-
ски провести разбор последствий принятия реше-
ний на основе неточной информации на вероятно-
стно-временн‚ые характеристики систем. С 2019 г.
общее число проведенных исследований увеличи-
лось незначительно (см. обзор в [1, разд. 2], [11, 12]).
В частности, в [11] было исследовано влияние ве-
личины (случайной) задержки между моментами,
когда серверы освобождаются от заданий, и мо-
ментами, когда об этом узнает диспетчер, на две
характеристики: распределение длин очередей на
серверах и (стационарное) среднее время отклика.
Предполагается, что диспетчер использует страте-
гию JIQ (Join the Idle Queue), а задержки суть не-
зависимые случайные величины с экспоненциаль-
ной функцией распределения (другими словами,
сообщения от серверов поступают к диспетчеру не
мгновенно, а через экспоненциально распределен-
ное время, причем независимо). Дополнительно
авторы предполагают, что состояние серверов из-
вестно в момент начала функционирования систе-
мы и (в отличие от «чистой» стратегии JIQ) серверы
оповещают диспетчера о каждом окончании обслу-
живания. Такая схема позволяет диспетчеру строить
оценки состояний системы. Авторам удалось вы-
яснить, что производительность таких систем (при
условии, что число серверов велико) не зависит от
величины средней задержки, если средняя задерж-
ка больше некоторого (вычислимого) порогового
значения. Например, в указанных условиях часть
серверов будет всегда свободна от заданий.

В [13] предложена новая (отличная от рассмат-
риваемой в данной статье) математическая модель
с потерями заявок, в рамках которой (в асимпто-
тическом режиме) с помощью методов обучения
с подкреплением можно подбирать эффективную
диспетчеризацию (идейно близкую к JSQ(d)) при
периодическом обновлении информации о теку-
щем состоянии серверов.

Судя по открытым источникам, в практике сис-
тем распределенных вычислений выбор зачастую
делается в пользу стандартных стратегий (JSQ,
JSQ(d), JIQ, PILD (Persistent Idle Load Distribu-
tion), SITA-E (Size Interval Task Assignment with Equal
Load) и др., см., например, обзор в [14, 15]) даже
в тех случаях, когда заведомо понятна их неопти-
мальность. Это обстоятельство связано с простотой
реализации таких стратегий и легкостью их мас-
штабирования. Поэтому научный и практический
интерес представляет поиск эффективных эвристик
на их основе. Наконец отметим, что известны ис-
следования (из свежих см., например, [16]), резуль-
таты которых говорят в пользу того, что системам
распределенных вычислений необходим не столь-
ко «очень умный» диспетчер, сколько правильная
архитектура и не требующие тонкой настройки ал-
горитмы диспетчеризации.

3 Последовательная
диспетчеризация
SITA(f, g)–JSQ(d)

Ввиду требования отсутствия значимых пауз при
принятии решений улучшение показателя V будем
искать на основе множества (легко реализуемых
и масштабируемых) известных статических и дина-
мических стратегий.

Рассмотрим правило, базирующееся на одно-
временном использовании двух приемов, широко
применяемых в задачах диспетчеризации: резерви-
рования серверов для заданий определенной дли-
ны2 и выбора сервера с наименьшей очередью3.
Резервирование предшествует выбору и осуще-
ствляется следующим образом. Обозначим через
X ⊂ (0,∞) множество значений случайной вели-
чины, задающей размер заявок, и будем считать,
что серверы имеют номера от 1 до N . Множе-
ства X и {1, . . . , N} разобьем на одинаковое число
непересекающихся непустых подмножеств, между
которыми установим взаимно однозначное соот-
ветствие:

X = X1
⋃

· · ·
⋃
Xk, Xi 6= ∅, Xi

⋂
Xj = ∅ ;

{1, . . . , N} = N1
⋃

· · ·
⋃
Nk ,

Ni 6= ∅, Ni

⋂
Nj = ∅, k > 1 .

Адресация заявок, поступающих в процессе
управления, осуществляется с учетом сделанного

1В [8] также речь идет и о других, отличных от описанной в разд. 1, схемах появления у диспетчера информации о состоянии
СМО второй фазы.

2Например, с помощью стратегии из семейства SITA [17].
3Или другой стратегии из семейства JSQ (см., например, обзор [14] или сноску на с. 53 в [1]).
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Схема диспетчеризации SITA(f, g)–JSQ(d) для рассмат-
риваемой модели

резервирования по принципу наименьшей очереди
следующим образом.

Обозначим через xτ размер заявки, поступив-
шей в (случайный) момент τ ; через l

(i)
τ — число

заявок (в сумме на первой и второй фазах), на-
правленных к серверу i, согласно последней ин-
формации, полученной диспетчером в момент t =
= t(τ) = [τ/–]– < τ ; через m(i)τ — число заявок,
направленных диспетчером к серверу i на проме-
жутке времени (t, τ), т. е. с момента последнего об-
новления информации. Если xτ ∈ Xk, то указанная
заявка направляется на один из серверов соответ-
ствующего подмножества Nk, причем этот сервер
выбирается согласно следующему варианту класси-
ческого алгоритма1 JSQ(d):

– случайным образом отбираются d серверов
из набора Nk (предполагается, что d ≤
≤ min1≤k≤K{|Nk|});

– среди отобранных серверов выбираются те, для
которых минимальна величина l(i)τ +m

(i)
τ ;

– заявка направляется на случайно выбранный
сервер из последней отобранной группы.

Результаты имитационных экспериментов по-
казывают, что предложенная «последовательная»
стратегия2, далее кодируемая как SITA(f, g)–JSQ(d)
(см. рисунок), позволяет диспетчеру бороться3 с не-
определенностью (привносимую в модель первой
фазой и ненулевым значением–) и улучшает пока-
зательV , по крайней мере в сравнении с обычными,
наиболее употребительными стратегиями.

4 Некоторые численные
результаты

В качестве первого примера рассмотрим модель
с одним входящим пуассоновским потоком интен-

сивности λ, экспоненциальным распределением
времени обслуживания на первой фазе и N = 128
СМО на второй фазе с распределением времени
обслуживания B(x) = 1− e−x.

В табл. 1 и 2 приведены значения средне-
го времени отклика V в зависимости от загрузки
(равной λ/128) при сравнительно малой и боль-
шой средних задержках на первой фазе и дис-
петчеризациях RND (случайный равновероятный
выбор), RR (циклический выбор), JSQ(d) с подо-
бранным (на имитационной модели [21]) значени-
ем d, SITA-E, а также предложенной в предыду-
щем разделе стратегии SITA(f.g)–JSQ(d). Для
применения последней необходимо предваритель-
но задавать схему резервирования. Во всех при-
водимых ниже примерах предполагается ее прос-
тейший вариант с двумя классами (т. е. k = 2),
причем X1 = (0,

∫ f

0
dB(x)], X2 = (

∫ f

0
dB(x),∞),

N1 = {1, . . . , g},N2 = {g+1, . . . , N}, а параметры f
и g выбраны не самым оптимальным образом.

Как видно из табл. 1 и 2, в марковском слу-
чае при любом значении загрузки новое правило
наилучшим образом оптимизирует среднее время
отклика V . Не использующая никаких наблюдений
рандомизированная стратегия (RND) оказывается
наименее эффективной вне зависимости от значе-
ний средней задержки на первой фазе и –. Не
требующий информации о числе заявок на фазах
(т. е. не зависящий от–) и легко реализуемый цик-
лический выбор (RR), который в известных случа-
ях оказывается оптимальным для рассматриваемо-
го функционала, оптимизирует его (в сравнении
с RND) и при наличии случайной задержки в ис-
полнении принятого диспетчером решения, но с ее
ростом (в среднем) все хуже4.

Статическая стратегия SITA-E не всегда превос-
ходит циклическую, но, поскольку она не требует
ни динамической информации о состоянии фаз,
ни оптимизации и не чувствительна к величинам
задержек, ее следует считать наиболее предпочти-
тельной из трех.

Стандартные динамические стратегии (как
и ожидалось) дают заметный выигрыш (в срав-
нении с RND, RR и SITA-E), пока информация
о состоянии фаз остается относительно «свежей»,
а решения диспетчера исполняются не со слишком
большой задержкой.

1См. также [18].
2Как известно, идея «смешения» стратегий в принципе не нова (см. стратегии в [19, 20] для моделей, близких к рассматриваемой).

Однако для того, чтобы ей успешно воспользоваться, требуется оттолкнуться от каких-то предпосылок, фактов или наблюдений
(см. разд. 5).

3Более успешно, чем предложенная в [1] для случая– = 0 «параллельная» стратегия.
4Связано это с тем, что в рассматриваемом случае поток заявок в каждую СМО второй фазы не будет эрланговским. Исходный

эрланговский поток, поступающий от диспетчера на первую фазу, «портится» и становится более «случайным», чем ранее (см.,
например, характеризацию выходящего потока из СМО Ek/M/∞ в [22, разд. 4.2]).
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Таблица 1 Зависимость среднего времени отклика V от загрузки для разных стратегий при различных значениях–
и средней задержке на первой фазе, равной 1 (экспоненциальное время обслуживания)

Загрузка
Диспетчеризация 0,2 0,4 0,6 0,8

– = 1 – = 15 – = 1 – = 15 – = 1 – = 15 – = 1 – = 15

RND 1,25 1,25 1,67 1,67 2,50 2,50 5,00 5,00
RR 1,02 1,02 1,22 1,22 1,67 1,67 2,96 2,96

JSQ(d), d = 13 1,00 1,06 1,12 1,25 1,36 1,65 1.85 2,55
SITA-E 1,13 1,13 1,33 1,33 1,75 1,75 3,00 3,00

SITA(f, g)–JSQ(d), d = 6, f = 1, g = 40 1,00 1,04 1,08 1,14 1,23 1,32 1,52 1,75

Таблица 2 Зависимость среднего времени отклика V от загрузки для разных стратегий при различных значениях–
и средней задержке на первой фазе, равной 10 (экспоненциальное время обслуживания)

Загрузка
Диспетчеризация 0,2 0,4 0,6 0,8

– = 1 – = 15 – = 1 – = 15 – = 1 – = 15 – = 1 – = 15

RND 1,25 1,25 1,67 1,67 2,50 2,50 5,00 5,00
RR 1,18 1,18 1,52 1,52 2,14 2,14 3,75 3,75

JSQ(d), d = 13 1,14 1,17 1,42 1,49 1,91 2,06 2,91 3,29
SITA-E 1,13 1,13 1,33 1,33 1,75 1,75 3,00 3,00

SITA(f, g)–JSQ(d), d = 6, f = 1, g = 40 1,08 1,10 1,25 1,29 1,55 1,61 2,23 2,34

Необходимо отметить, что при–→ ∞ динами-
ческие стратегии типа JSQ(d) могут быть как лучше,
так и хуже статических стратегий; напротив, пред-
ложенное новое правило SITA(f, g)–JSQ(d) оста-
ется, судя по численным результатам, равномерно
наилучшим.

Дальнейшие численные эксперименты показы-
вают, что описанное выше ранжирование стратегий
сохраняется и в более общих случаях. Действитель-
но, рассмотрим в качестве второго примера ана-
логичную модель с той же схемой резервирования,
однако в которой время обслуживания имеет рас-

Таблица 3 Зависимость среднего времени отклика V от загрузки для разных стратегий при различных значения –
и средней задержке на первой фазе, равной 1 (Парето-распределенное время обслуживания)

Загрузка
Диспетчеризация 0,2 0,4 0,6 0,8

– = 1 – = 15 – = 1 – = 15 – = 1 – = 15 – = 1 – = 15

RND 1,37 1,37 2,38 2,38 3,69 3,69 8,30 8,30
RR 1,24 1,24 1,74 1,74 2,83 2,83 5,71 5,71

JSQ(d), d = 13 1,00 1,10 1,11 1,32 1,29 1,68 1,64 2,39
SITA-E 1,13 1,13 1,35 1,35 1,76 1,76 3,01 3,01

SITA(f, g)–JSQ(d), d = 6, f = 1, g = 64 1,00 1,05 1,06 1,17 1,21 1,38 1,46 1,79

Таблица 4 Зависимость среднего времени отклика V от загрузки для разных стратегий при различных значениях–
и средней задержке на первой фазе, равной 10 (Парето-распределенное время обслуживания)

Загрузка
Диспетчеризация 0,2 0,4 0,6 0,8

– = 1 – = 15 – = 1 – = 15 – = 1 – = 15 – = 1 – = 15

RND 1,37 1,37 2,38 2,38 3,69 3,69 8,30 8,30
RR 1,35 1,35 1,93 1,93 3,24 3,24 6,31 6,31

JSQ(d), d = 13 1,14 1,20 1,42 1,55 1,85 2,12 2,73 3,22
SITA-E 1,13 1,13 1,35 1,35 1,76 1,76 3,01 3,01

SITA(f, g)–JSQ(d), d = 6, f = 1, g = 64 1,09 1,12 1,28 1,34 1,61 1,72 2,28 2,47
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пределение с более тяжелым «хвостом» (Парето со
средним 1 и дисперсией ≈ 4,76). Значения среднего
времени отклика V в зависимости от загрузки при
сравнительно малой и большой средних задержках
на первой фазе приведены в табл. 3 и 4.

При увеличении числа входных потоков не на-
блюдается изменений в обрисованной выше карти-
не с качественной точки зрения. В новой стратегии
(в отличие, например, от SITA-E) потребуется из-
менение лишь значений параметров1.

Как показывают имитационные эксперимен-
ты, от предложенной новой стратегии SITA(f, g)–
JSQ(d) в принципе можно добиваться большего
(в частности, чем то, что указано в табл. 1–4) пу-
тем параметрической оптимизации (см. в качестве
примера табл. 5).

Практическое решение этого вопроса (для рас-
сматриваемых моделей) есть компромисс между
трудностью определения наилучших значений па-
раметров и достигаемым при них выигрышем.
Простого правила здесь предложить не удается.

Результаты табл. 5, а также аналогичные ре-
зультаты для других исходных данных показыва-
ют, что экстремум V (и других, связанных с ним
функционалов) относительно пологий (в коорди-
натах f, g). Значения V при предложенном новом
правиле остаются лучше, чем у конкурентов, даже
при отклонении в довольно большой окрестности
от оптимальной, но трудно определяемой точки.

Таблица 5 Среднее время отклика V из
табл. 4 при загрузке 0,8, – = 15, страте-
гии SITA–JSQ(d) и различных значениях
ее параметров f и g

f
g

60 64 68
0,9 2,57 2,76 3,18
1,0 2,54 2,47 2,50
1,1 3,11 2,63 2,43

5 Заключение
Проблема оптимизации среднего времени от-

клика V и связанных с ним функционалов в стоха-
стических системах с параллельным обслуживани-
ем, в которых имеют место (случайные) задержки
при передаче динамической информации, необхо-
димой для принятия решений, заключается в поис-
ке приемов максимально эффективного исполь-
зования поступающей к диспетчеру устаревшей
информации2. Предложенная в статье стратегия

SITA(f, g)–JSQ(d) служит одним из таких приемов,
причем не требующим для применения каких-либо
аппаратных изменений. В связи с новым правилом
необходимо отметить несколько обстоятельств.

Во-первых, использование значения полной
очереди к СМО второй фазы выглядит совершенно
естественно. С учетом того, что первая фаза пред-
ставляет собой бесконечнолинейную СМО, вся
модель может трактоваться как модель из N парал-
лельных двухфазных СМО •/GI/∞ → •/GI/1/∞.
Поэтому если и применять динамические страте-
гии, то к таким цепочкам, рассматриваемым как
единая СМО.

Во-вторых, в случае запаздывания и нформация
о полной очереди становится все менее полезной,
однако не теряет полностью своего значения даже
при больших интервалах обновления–. Дело в том,
что в стационарном режиме (который имеет место
при рассматриваемых диспетчеризациях) средний
размер очереди постоянен, а случайные его значе-
ния, пусть и устаревшие, характеризуются тем же
средним.

В-третьих, оценка, на основании которой при-
нимается решение о выборе СМО второй фазы,
состоит из двух слагаемых. Можно предположить,
что при больших запаздываниях – первое слага-
емое в оценке очереди вообще можно отбросить,
поскольку на первый план выходит информация,
которой диспетчер располагает постоянно и без за-
держки: число заявок, направленных к той или
иной СМО второй фазы. Однако в определенном
смысле нечто подобное происходит как бы авто-
матически. Первое слагаемое, как было сказано,
в среднем равно среднему размеру полной очереди.
Если интервал обновления велик, то эта величина
становится существенно меньше к концу интерва-
ла, чем второе слагаемое — накапливаемая сумма
отправленных заявок.

В-четвертых, упомянутое второе слагаемое вы-
глядит плохой оценкой полной очереди, поскольку
не учитывает те заявки, которые покинули сис-
тему. Это верно, но в данном случае не имеет
большого значения. Ведь надо учесть, что для
принятия решений требуются не абсолютные зна-
чения, а только их попарные разности, поскольку
ищется минимальная очередь. Кроме того, надо
принять во внимание, что при достаточной за-
грузке системы (неизвестное) число обслуженных
заявок в среднем одинаково для всех серверов (так
как, по предположению, они имеют одинаковую
производительность).

1Например, при двух пуассоновских входных потоках (каждый интенсивности λ/2) заявок с экспоненциальным и Парето-рас-
пределенным временами обслуживания соответственно d = 6, f = 1 и g = 50.

2С учетом имеющихся у диспетчера сведений о структуре системы и более-менее полном представлении о значениях ее исходных
параметров, что обычно не является ограничением.
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Наконец, целевая функция обнаруживает суще-
ственную зависимость от параметров f и g (см.
табл. 5). В то же время удовлетворительные зна-
чения пары (f, g) сравнительно легко находятся
простым подбором. Эксперименты показывают,
что область минимальных по этим параметрам зна-
чений целевой функции довольно пологая. Де-
тальный анализ зависимости целевой функции от
параметров алгоритма, в частности проверка уни-
модальности, могли бы стать темой исследования
с целью выработки рекомендаций по выбору пара-
метров.
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ПРАВИЛЬНЫЕ ПРЕДСТАВИТЕЛЬНЫЕ ЭЛЕМЕНТАРНЫЕ

КЛАССИФИКАТОРЫ НАД ПРОИЗВЕДЕНИЕМ ЧАСТИЧНЫХ

ПОРЯДКОВ∗

Н. А. Драгунов1, Е. В. Дюкова2

Аннотация: Рассматриваются вопросы создания алгоритмического обеспечения для одной из централь-
ных задач машинного обучения — задачи классификации по прецедентам. Разработаны и исследованы
оригинальные процедуры логического анализа и классификации целочисленных данных, представимых
в виде совокупности элементов декартова произведения конечных частично упорядоченных множеств
(произведения частичных порядков). На этапе обучения предлагаемых процедур осуществляется поиск
так называемых правильных представительных элементарных классификаторов (ЭК) — специальных
фрагментов признаковых описаний прецедентов, позволяющих различать объекты из разных клас-
сов. Построен асимптотически оптимальный алгоритм перечисления искомых ЭК над произведением
антицепей и приведены результаты его тестирования на реальных задачах. Дано теоретическое и экспе-
риментальное обоснование эффективности новых распознающих процедур в случае задания линейных
порядков на множествах значений признаков. Теоретические выводы основаны на изучении метрических
(количественных) свойств множества правильных представительных ЭК.

Ключевые слова: классификация по прецедентам; корректный логический классификатор; правильный
представительный элементарный классификатор; частичный порядок; декартово произведение частич-
ных порядков; метрические (количественные) свойства множества элементарных классификаторов
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1 Введение

В задаче классификации по прецедентам под
прецедентной (обучающей) информацией понима-
ется совокупность примеров изучаемых объектов,
в которой каждый объект представлен в виде чис-
лового вектора, полученного на основе измерения
или наблюдения ряда его параметров или харак-
теристик, называемых признаками. Каждый при-
мер (обучающий объект, или прецедент) приписан
к определенному классу объектов. Требуется на
основе анализа прецедентной информации уметь
классифицировать новые, не входящие в обуча-
ющую выборку, объекты. Среди разных подходов
к решению этой задачи важное место занимают ме-
тоды логического анализа данных, основанные на
применении аппарата дискретной математики. Ло-
гический подход возник в связи с необходимостью
прогнозировать редкие события, для которых нет
достаточного статистического материала.

При конструировании логических классифика-
торов большое внимание уделяется вопросам син-
теза корректных алгоритмов, т. е. алгоритмов, не
ошибающихся на обучающей выборке. Предпола-
гается, что каждый признак имеет ограниченное

множество допустимых значений, которые кодиру-
ются целыми числами, и любые два прецедента из
разных классов имеют разные описания. Обуче-
ние классификатора сводится к поиску в исход-
ных данных информативных фрагментов описа-
ний прецедентов. Такие фрагменты, называемые
корректными ЭК, позволяют различать объекты из
разных классов и, как правило, имеют содержатель-
ное описание в терминах той прикладной области,
в которой решается задача. По их наличию или,
наоборот, отсутствию в описании распознаваемо-
го объекта решается вопрос о его классификации.
Однако требование корректности приводит к тому,
что на этапе обучения логических классификато-
ров возникают сложные в вычислительном плане
дискретные задачи.

Отечественное направление логической клас-
сификации в основном представлено методами,
именуемыми процедурами корректного голосова-
ния (Correct Voting Procedures, или CVP) [1–7].
Фундаментальную роль в создании этого направле-
ния сыграли работы представителей школ чл.-корр.
РАН С. В. Яблонского и акад. РАН Ю. И. Журавлё-
ва. В ряде публикаций отечественных и зарубежных
авторов предложены и развиты два других направ-

∗Исследование выполнено за счет гранта Российского научного фонда № 24-21-00301, https://rscf.ru/project/24-21-00301/.
1Федеральный исследовательский центр «Информатика и управление» Российской академии наук, nikitadragunovjob@gmail.com
2Федеральный исследовательский центр «Информатика и управление» Российской академии наук, edjukova@mail.ru
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ления логической классификации, а именно: логи-
ческий анализ данных (Logical Analysis of Data, или
LAD) [8–11] и анализ формальных понятий (For-
mal Concept Analysis, или FCA) [12–15]. Каждый
из подходов использует свою терминологию и глав-
ным образом рассматривает модели, основанные
на поиске корректных ЭК специального вида, на-
зываемых в направлении CVP представительными
ЭК [5].

Описание логического классификатора может
быть дано с использованием терминологии тео-
рии логических функций. Тогда представитель-
ный ЭК класса K — это допустимая конъюнкция
(ДК) для не всюду определенной двузначной ло-
гической функции FK , принимающей на целочис-
ленных описаниях прецедентов класса K и других
классов соответственно значение 1 и 0. По опреде-
лению интервал истинности ДК функцииFK имеет
непустое пересечение с множеством единиц функ-
ции FK и пустое пересечение с множеством нулей
этой функции.

В CVP наиболее информативной считается та-
кая ДК функции FK , которая перестает быть пред-
ставительным ЭК класса K при удалении из нее
хотя бы одного сомножителя. Такая конъюнк-
ция называется максимальной для FK (в матрич-
ной формулировке это тупиковый представитель-
ный ЭК класса K). На этапе обучения основных
моделей возникает задача монотонной дуализации,
которая относится к числу труднорешаемых дис-
кретных задач.

В LAD ищутся так называемые максималь-
ные логические закономерности класса K, т. е. ДК
функции FK , принимающие значение 1 на наи-
большем числе описаний прецедентов класса K.
При этом в основном решаются сложные в вычис-
лительном плане оптимизационные задачи линей-
ного программирования.

Направление FCA в основном представлено
ДСМ-методом В. К. Финна. ДСМ-классифика-
тор нацелен на поиск ДК функции FK , каждая
из которых не допускает добавление любого нового
сомножителя, поскольку это уменьшает число пре-
цедентов, на которых ДК принимает значение 1.
На этапе обучения возникают дискретные перечис-
лительные задачи, которые алгоритмически менее
сложны, чем задача монотонной дуализации.

В каждом из трех направлений логической клас-
сификации решающее правило основано на проце-
дуре «голосования». В CVP и LAD голосующая
ДК функции FK дает положительную оценку за
отнесение распознаваемого объекта S к классу K,
если описание объекта S принадлежит интервалу
истинности этой конъюнкции. Иначе указанная
оценка равна 0. Базовая версия ДСМ-классифика-

тора использует более строгое решающее правило,
что приводит к большому числу отказов от класси-
фикации.

Традиционные схемы логической классифика-
ции ориентированы исключительно на случай,
когда множество значений каждого признака пред-
ставляет собой конечную антицепь и для сравне-
ния целочисленных признаковых описаний объек-
тов используется отношение равенства. Вопросы
модификации процедур CVP, LAD и ДСМ для кор-
ректного решения задачи классификации частично
упорядоченных целочисленных данных общего ви-
да рассматривались в ряде работ [3, 11, 15]. Особое
внимание уделялось случаю, когда на множествах
значений признаков заданы конечные линейные
порядки, т. е. указанные множества — конечные
цепи. С использованием линейных порядков, полу-
ченных в результате анализа встречаемости отдель-
ных значений признаков в описаниях прецедентов,
были разработаны практические модели логиче-
ских классификаторов.

В [7] рассмотрена возможность повышения
качества и скорости работы логических класси-
фикаторов на основе применения методов поиска
в описаниях прецедентов каждого класса K час-
то встречающихся фрагментов специального вида,
названных правильными ЭК, и с последующим от-
бором среди них тех ЭК, которые представляют
собой ДК для FK . Исследован случай, когда на
множествах значений признаков частичные поряд-
ки не заданы, т. е. описания изучаемых объектов —
элементы декартова произведения антицепей. На
этапе обучения классификатора, именуемого далее
алгоритмом REC, фактически ищутся ДК функ-
ции FK , каждая из которых, имея ранг r (r ≥ 1),
принимает значение 1 на не менее чем r преце-
дентах класса K. В экспериментах параметр r
фиксировался и выбирался с использованием тео-
ретических оценок типичного ранга правильного
ЭК. Экспериментально показано, что осуществля-
емый на этапе обучения поиск искомых ЭК требует
меньших временн‚ых затрат по сравнению с реше-
нием задач, возникающих при реализации опи-
санных выше традиционных моделей логических
классификаторов. Этот вывод подтвержден теоре-
тическими оценками типичного числа правильных
ЭК [4, 6].

В настоящей работе получены оценки числа ДК
функции FK , порождающих правильные ЭК клас-
са K, и на основании этих оценок сделан вывод об
асимптотической оптимальности алгоритма REC
в случае, когда число признаков существенно боль-
ше числа прецедентов. Технические основы приво-
димых оценок числа ДК функции FK были разра-
ботаны ранее при исследовании сложности синтеза
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процедур CVP (см., например, [1]). Кроме того,
проведена модификация алгоритма REC для рабо-
ты с данными, представленными в виде совокуп-
ности элементов декартова произведения произ-
вольных конечных частичных порядков. Построен
новый классификатор REC+, эффективность кото-
рого обоснована теоретически и экспериментально
в случае задания линейных порядков на множе-
ствах значений признаков. Описание используемой
в экспериментах процедуры линейного упорядоче-
ния значений признаков приведено в подразд. 2.2.

2 Основные результаты

Рассмотрим задачу классификации по пре-
цедентам с множеством целочисленных призна-
ков {x1, . . . , xn} и множеством непересекающихся
классов {K1, . . . ,Kl}, l ≥ 2.

Пусть исследуемое множество объектовM пред-
ставимо в видеM = N1×· · ·×Nn, гдеNj, j = 1, n, —
конечное множество допустимых значений призна-
ка xj, на котором задан частичный порядок. Для
обозначения того, что b, b ∈ Nj, следует за a, a ∈ Nj,
используется запись a 4 b.

Зададим частичный порядок на множестве M .
ПустьS = (a1, . . . , an)иS∗ = (b1, . . . , bn)— объекты
из M , в которых aj, j = 1, n, и bj, j = 1, n, — значе-
ния признака xj . Будем считать, что элемент S∗ =
= (b1, . . . , bn) следует за элементомS = (a1, . . . , an),
если aj 4 bj при j = 1, n.

Элементарным классификатором ранга r назо-
вем пару (σ,H), в которой H — набор из r
различных признаков видаH = {xj1 , . . . , xjr

}, а σ =
= (σ1, . . . , σr)— набор, в котором σi, i = 1, r, — до-
пустимое значение признака xji

. Будем говорить,
что ЭК (σ,H), H = {xj1 , . . . , xjr

}, σ = (σ1, . . . , σr),
содержится в объекте S, S = (a1, . . . , an), если
aji

4 σi при i = 1, r. Элементарному классифи-
катору (σ,H) поставим в соответствие множество
ЭК ранга 1 вида (σi, {xji

}), i ∈ {1, 2, . . . , r}, обозна-
чаемое Q(σ,H).

Элементарный классификатор (σ,H) ранга r
называется правильным для класса K, K ∈
∈ {K1, . . . ,Kl}, если не менее чем r прецедентов
класса K содержат этот ЭК, т. е. ЭК (σ,H)— r-час-
тый в K. Правильный для класса K ЭК (σ,H)
называется максимальным правильным, если любой
ЭК (σ′, H ′) такой, чтоQ(σ,H) ⊂ Q(σ′,H′), не является
правильным ЭК для K. Элементарный классифи-
катор (σ,H)называется представительным для клас-

са K, если хотя бы один прецедент из K содержит
(σ,H) и ни один прецедент из �K = {K1, . . . ,Kl}\K
не содержит (σ,H), т. е. ЭК (σ,H)— нечастый в �K.
Представительный ЭК классаK ранга r называется

правильным представительным, если он правиль-
ный для K. Нечастый в �K ЭК называется мини-

мальным нечастым, если любой ЭК (σ′, H ′) такой,
что Q(σ′,H′) ⊂ Q(σ,H), не является нечастым ЭК
в �K. Представительный ЭК класса K называется
тупиковым, если он минимальный нечастый в �K.

Заметим, что в рассматриваемом общем случае
для существования представительных ЭК необхо-
димо, чтобы описания объектов из разных классов
были несравнимыми. Этого можно добиться пу-
тем дублирования признаковых описаний объектов
с обратным отношением порядка [3].

2.1 Схемы работы алгоритмов
REC и REC+

Пусть L1 — матрица, строки которой пред-
ставляют собой описания прецедентов класса K,
и L2 — матрица, строками которой служат описа-
ния остальных прецедентов. Опишем схему работы
алгоритма REC.

Элементы ai1j1 и ai2j2 матрицы L1 назовем со-

вместимыми, если i1 6= i2, j1 6= j2, и ai2j1 = ai1j1 ,
ai1j2 = ai2j2 . Набор Q из r элементов матрицы L1
называется совместимым, если выполнено одно из
следующих двух условий:

(1) r = 1;

(2) r ≥ 2
и любые два элемента набора Q совместимы.

Пусть S(L1) — совокупность всех совместимых
наборов элементов матрицы L1. Нетрудно видеть,
что ЭК (σ,H), σ = (σ1, . . . , σr), H = {xj1 , . . . , xjr

},
будет правильным для K тогда и только тогда, ко-
гда вS(L1) существует набор {ai1j1 , . . . , airjr

} такой,
что aiqjq

= σq при q = 1, r.
Элементу aij , i = 1,m1, j = 1, n, матрицы L1

присвоим номер N [i, j] = (j − 1)m1 + i. Пусть
R(L1) — множество всех элементов матрицы L1.
Элементы с минимальным номером и максималь-
ным номером в R ⊆ R(L1) обозначим соответ-
ственно e1(R) и e2(R). При R = R(L1) положим
e1(R) = e1 и e2(R) = e2.

Пусть U(L1) — множество всех правильных ЭК
класса K. Упорядочим U(L1), указав для каждого
ЭК (σ,H) из U(L1), порождаемого набором Q из
S(L1), Q 6= {e2}, следующий за ним ЭК, обознача-
емый–(σ,H).

Пусть Q = {ai1j1 , . . . , airjr
} и N [it+1, jt+1] >

> N [it, jt] при t = 1, r − 1. Положим Qt =
= {ai1j1 , . . . , aitjt

}, t = 1, r. Элемент aij ∈ R(L1)
назовем t-допустимым, если (Qt ∪ {aij}) ∈ S(L1)
и в R(L1) не существует элемента apj такого, что
(Qt ∪ {apj}) ∈ S(L1) и p > i.
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Обозначим черезRt, t = 1, r, совокупность всех
элементов вR(L1), номера которых большеN [it, jt],
и через Gt, t = 1, r, совокупность всех t-допусти-
мых элементов в R(L1). Положим G0 — множество
элементов столбца с номером j1, отличных от ai1j1 .

Возможны следующие случаи.
Случай 1. Gr ∩Rr 6= ∅. Тогда ЭК–(σ,H) порож-

дается набором Q ∪ {e1(Gr ∩Rr)} из S(L1).
Случай 2. Gr ∩Rr = ∅:

(а) r = 1; тогда ЭК –(σ,H) порождается элемен-
том e1(G0 ∩R1) матрицы L1;

(б) r > 1 иGr−1∩Rr 6= ∅; тогда ЭК–(σ,H) порож-
дается набором (Q\{airjr

})∪{e1(Gr−1∩Rr)} из
S(L1);

(в) r > 1 и Gr−1 ∩ Rr = ∅; тогда ЭК –(σ,H)
порождается набором (Q\{air−1jr−1

, airjr
}) ∪

∪ {e1(Gr−2 ∩Rr−1)} из S(L1).

Заметим, что Gr−2 ∩ Rr−1 6= ∅ при r ≥ 2, так
как airjr

∈ Gr−2 ∩ Rr−1. Если Gr ∩ Rr = ∅, то
ЭК, порождаемый набором Q, — максимальный
правильный в K.

Таким образом, алгоритм REC строит множе-
ство всех правильных представительных ЭК клас-
са K за |U(L1)| шагов, где |U(L1)| — мощность
U(L1). На первом шаге строится ЭК, порождаемый
элементом e1. Если на шаге i, i = 1, |U(L1)|, по-
строен ЭК (σ,H) и i < |U(L1)|, т. е. ЭК (σ,H) не
порожден элементом e2, то на шаге i + 1 строится
ЭК–(σ,H). Построив очередной правильный ЭК,
алгоритм REC оценивает его корректность путем
просмотра строк матрицы L2, т. е. проверяет, явля-
ется ли построенный ЭК представительным для
класса K.

Алгоритм REC+ работает по аналогичной схе-
ме. В определении совместимости двух элементов
матрицыL1 нужно заменить знак равенства на знак
предшествования «4».

Для наглядности работу алгоритмов REC
и REC+ можно представить в виде обхода дерева
решений (ДР) в глубину: корнем ДР служит пустой
набор; вершины ДР — правильные ЭК класса K,
которые либо являются правильными представи-
тельными ЭК классаK, найденными впервые, либо
соответствуют лишним шагам. Висячие вершины —
максимальные правильные ЭК класса K.

2.2 Об асимптотической оптимальности
алгоритма REC в случае большого
числа признаков

Предполагается, что множество значений каж-
дого признака — антицепь, т. е. на каждом мно-
жестве Nj, j = 1, n, отношение порядка не зада-
но. Рассматривается случай, когда каждый признак

принимает значения из множества {0, 1, . . . , k − 1},
k ≥ 2, и m1 — число прецедентов класса K, K ∈
∈ {K1, . . . ,Kl}, m2 — число прецедентов не из K.

Введем обозначения: Mk
un — совокупность

всех матриц размера u × n с элементами из
{0, 1, . . . , k − 1}, k ≥ 2; Nk

m1m2n — множество всех
упорядоченных пар матриц вида (L1, L2), где L1 ∈
∈Mk

m1n, L2 ∈Mk
m2n; |A| — мощность множества A.

Пусть строки матрицы L1, L1 ∈ Mk
m1n, — это

описания прецедентов класса K, а строки мат-
рицы L2, L2 ∈ Mk

m2n, — описания остальных
прецедентов. Положим P(L1, L2) и U(L1) — со-
ответственно множество всех правильных предста-
вительных ЭК для класса K и множество всех
правильных ЭК для класса K. Представляют
интерес асимптотические оценки типичных зна-
чений величин |P(L1, L2)| и |U(L1)|, (L1, L2) ∈
∈ Nk

m1m2n, и оценки типичных значений рангов
ЭК из P(L1, L2) и U(L1).

Ниже приводится асимптотическая оценка ти-
пичного значения |P(L1, L2)|, (L1, L2) ∈ Nk

m1m2n,
и оценка типичного значения ранга ЭК изP(L1, L2)
при условии, что m1 и m2 существенно меньше n.

Выявление типичной ситуации связано с выска-
зыванием типа «для почти всех пар матриц (L1, L2)
из Nk

m1m2n при n → ∞ выполнено F1(L1, L2) ≈
≈ F2(L1, L2)» (здесь F1(L1, L2) и F2(L1, L2) — два
функционала, заданных на парах матриц (L1, L2)
из Nk

mn). Данное высказывание означает, что суще-
ствуют две положительные бесконечно убывающие
функции δ1(n) и δ2(n) такие, что для всех достаточ-
но больших n имеет место

1− |N|
|Nk

m1m2n|
≤ δ1(n),

где N — множество таких пар (L1, L2) в Nk
m1m2n,

для которых

1− δ2(n) <
|F1(L)|
|F2(L)|

< 1 + δ2(n).

Пусть r1 = [0,5 logk m1n − 0,5 logk log2k m1n −
− logk logk logk n], где [q] — целая часть от
числа q; r2 =]0,5 logk m1n − 0,5 logk log2k m1n +
+ logk logk logk n[, где ]q[ — наименьшее целое,
превосходящее q; φ— интервал [r1, r2]; Pφ(L1, L2)—
множество ЭК изP(L1, L2), ранги которых принад-
лежат интервалу φ; bn ≈ cn, n → ∞, означает, что
limn→∞ bn/cn = 1. Имеет место следующая

Теорема 1. Еслиmα
1 ≤ n ≤ km1β, α > 1, β < 1, k ≥ 2,

иm2 ≤ m1, то для почти всех пар матриц (L1, L2) из

Nk
m1m2n при n→ ∞ справедливо

|P(L1, L2)| ≈ |Pφ(L1, L2)| ≈
∑

r∈φ

Cr
nC

r
m1
kr−r2
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и ранги почти всех ЭК из P(L1, L2) принадлежат

интервалу φ.

Пусть Uφ(L1), L1 ∈ Mk
m1n, — множество всех

правильных ЭК класса K, ранги которых принад-
лежат интервалу φ. В [4] доказана следующая

Теорема 2. Еслиmα
1 ≤ n ≤ km1β, α > 1, β < 1, k ≥ 2,

то для почти всех матриц L1 из Mk
m1n при n → ∞

справедливо

|U(L1)| ≈ |Uφ(L1)| ≈
∑

r∈φ

Cr
nC

r
m1
kr−r2

и ранги почти всех ЭК из U(L1) принадлежат интер-

валу φ.

Алгоритм REC, предложенный в [7], осуще-
ствляет классификацию на основе проведения про-
цедуры голосования по правильным представи-
тельным ЭК каждого класса K. Экспериментально
подтверждена вычислительная эффективность это-
го алгоритма. На очередном шаге алгоритм REC
находит вR(K)новый правильный ЭК (σ,H)и про-
веряет, является ли ЭК (σ,H)нечастым в множестве
прецедентов, не принадлежащих K. Согласно при-
веденным выше теоремам 1 и 2 при выполнении
определенных ограничений на m1, m2 и n алго-
ритм REC является асимптотически оптимальным.
Поясним сказанное.

В теории алгоритмической сложности дискрет-
ных задач эффективность алгоритмов для перечис-
лительных задач принято оценивать временем вы-
полнения одного шага, т. е. временем нахождения
очередного решения. Алгоритмы с временн‚ыми
оценками вида O(N), где N — полином от разме-
ра входа задачи, называются алгоритмами с поли-
номиальными задержками и считаются наиболее
эффективными, причем оценки даются для самой
сложной индивидуальной задачи [16].

Особой сложностью отличаются перечисли-
тельные задачи, труднорешаемость которых имеет
два аспекта: экспоненциальный рост числа реше-
ний при увеличении размера задачи и сложность
нахождения (перечисления) каждого нового реше-
ния. Главной перечислительной задачей считается
монотонная дуализация. В матричной постанов-
ке это задача построения неприводимых покрытий
булевой матрицы [1]. Другие две формулировки мо-
нотонной дуализации используют понятия теории
булевых функций [17] и теории гиперграфов [18].
Вопрос о существовании эффективных алгоритмов
для этой задачи был поставлен почти 50 лет на-
зад. Однако статус монотонной дуализации в плане
полиномиальной разрешимости до сих пор неиз-
вестен. Требуемые алгоритмы удалось построить
для немногих частных случаев.

Асимптотически оптимальный алгоритм отли-
чается от алгоритма с полиномиальной задерж-
кой тем, что имеет лишние полиномиальные шаги.
Это шаги, на которых не строятся новые решения.
Основное требование: для почти всех индивидуаль-
ных задач число лишних шагов алгоритма должно
быть мал‚о по сравнению с числом всех решений
задачи. При этом проверка того, является ли шаг
лишним, должна происходить за полиномиальное
от размера входа время. Подход к оценке типичной
сложности перечислительного алгоритма предло-
жен Е. В. Дюковой в 1977 г. и первоначально был
продемонстрирован автором на задаче монотонной
дуализации, а затем на ее обобщении — задаче пе-
речисления тупиковых покрытий целочисленной
матрицы. К настоящему моменту построен целый
ряд асимптотически оптимальных алгоритмов мо-
нотонной дуализации и ее обобщений, которые,
имея теоретическое обоснование эффективности,
на сегодняшний день остаются лидерами по ско-
рости счета [19].

Алгоритм REC перечисляет правильные ЭК
класса K с полиномиальной временн‚ой оценкой
шага, равной O(m21n), при этом проверка того,
является ли шаг лишним, выполняется за время
O(m2n). Время работы алгоритма REC измеряет-
ся числом совершаемых им просмотров элементов
матриц L1, L1 ∈Mk

m1n, и L2, L2 ∈Mk
m2n.

2.3 Алгоритм REC+:
метрические свойства
и экспериментальные исследования

Предлагаемый классификатор REC+ работает
с частично упорядоченными данными по схеме,
аналогичной схеме работы классификатора REC.
Для каждого класса ищутся правильные ЭК. Ес-
ли на очередном шаге алгоритма найден правиль-
ный ЭК, то проверяется его корректность. Реша-
ющее правило такое же, как и в процедурах CVP
и LAD. В результате найденные правильные пред-
ставительные ЭК классаK «голосуют» за отнесение
распознаваемого объекта к этому классу.

Приведем описание используемой в экспери-
ментах процедуры линейного упорядочения значе-
ний признаков. Пусть R1(K) иR2(K)— множества
прецедентов из класса K и не из K соответст-
венно, |Rt(K)| — мощность Rt(K), t = 1, 2; S =
= (a1, . . . , an)— объект из M , a ∈ Nj, j = 1, n.

Положим Bj(S, a) = 1, если aj = a,

иначе Bj(S, a) = 0; µ
(t)
j (a) = (1/|Rt(K)|) ×

× ∑S∈Rt(K)
Bj(S, a), t = 1, 2; µj(a) = µ

(1)
j (a) −

− µ
(2)
j (a).

ИНФОРМАТИКА И ЕЁ ПРИМЕНЕНИЯ том 19 выпуск 4 2025 47



Н. А. Драгунов, Е. В. Дюкова

Величина µj(a), a ∈ Nj, j = 1, n, служит
оценкой информативности значения a признака xj

в классе K и позволяет установить на множестве
значений признака xj, встречающихся в описани-
ях прецедентов из K, линейный порядок, согласно
которому a 4 b, b ∈ Nj, если µj(a) ≤ µj(b).

В экспериментальном исследовании модели
REC+ признаковое описание объекта дублирует-
ся, причем на дублированных признаках устанав-
ливается обратный линейный порядок. Ищутся
правильные представительные ЭК заданного ран-
га r. Параметр r выбирается с использованием
верхней оценки типичного ранга правильного ЭК.
Указанная оценка приведена в теоремах 3 и 4 соот-
ветственно для случая n ≤ m1 и n≫ m1.

Приводимые ниже в теоремах 3 и 4 теоретиче-
ские оценки получены в предположении, что Nj =
= {0, 1, . . . , k − 1}, k ≥ 2, j = 1, n, и элементы в Nj

линейно упорядочены в порядке возрастания.
Положим d = k/(k − 1): σ ∈ Er

k−1, σ =
= (σ1, . . . , σr); Qr(σ) = (σ1 + 1)

r · · · (σr + 1)
r;

r3 =] logd m1 + logd logd m1[; r4 =]0,5 logd m1n −
− 0,5 logd logd m1n+ logd logd logd n[; ϕ3 — интервал
[1, r3]; ϕ4 — интервал [1, r4]; Er

k−1 — множество
наборов вида (σ1, . . . , σr), где σi ∈ {0, 1, . . . , k − 2},
k ≥ 2, при i = 1, r. Справедливы следующие теоре-
мы 3 и 4.

Теорема 3. Еслиn ≤ m1, то для почти всех матрицL1
из Mk

m1n при n→ ∞ верно

|U(L1)| .
∑

r∈ϕ3

∑

σ∈Er
k−1

Qr(σ)C
r
nC

r
m1
k−r2

и ранги почти всех правильных ЭК из U(L1) принадле-

жат интервалу ϕ3.

Теорема 4. Если mα
1 ≤ n ≤ dm1 , α > 1, то для почти

всех матриц L1 из Mk
m1n при n→ ∞ верно

|U(L1)| ≈
∑

r∈ϕ4

∑

σ∈Er
k−1

Qr(σ)C
r
nC

r
m1
k−r2

и ранги почти всех правильных ЭК из U(L1) принадле-

жат интервалу ϕ4.

Замечание 1. В [2] показано, что в случае задания
частичных порядков на множествах значений при-
знаковNj = {0, 1, . . . , k−1}, k ≥ 2, j = 1, n, на этапе
обучения процедур CVP возникает задача дуализа-
ции над декартовым произведением N1 × · · · ×Nn.
Приведена матричная формулировка этой задачи,
согласно которой требуется перечислить все так
называемые упорядоченные тупиковые покрытия
матрицы L, L ∈ Mk

m2n. Другими словами, тре-
буется найти все минимальные нечастые ЭК в �K.
Множество всех искомых нечастых ЭК обозначим
через B(L).

Пусть Nj = {0, 1, . . . , k − 1}, k ≥ 2, j = 1, n,
и элементы в Nj линейно упорядочены в порядке
возрастания; r5 =]0,5 logdm2n− 0,5 logd logdm2n+
+ logd logd logd n[; ϕ5 — интервал [1, r5]. В [2] фак-
тически доказана следующая

Теорема 5. Еслиmα
2 ≤ m ≤ dm2 , α > 1, то для почти

всех матриц L из Mk
m2n при n→ ∞ верно

|B(L)| ≈
∑

r∈ϕ5

∑

σ∈Er
k−1

Qr(σ)C
r
nC

r
m2
r!k−r2

и ранги почти всех ЭК из принадлежат интервалуϕ5.

Таким образом, еслиm1 ≤ m2, то согласно оцен-
кам, приведенным в теоремах 4 и 5, число правиль-
ных ЭК вK существенно меньше числа минималь-
ных нечастых ЭК в �K. При m1 = m2 типичный
ранг каждого из двух видов ЭК принадлежит одно-
му интервалу. Аналогичный результат для случая,
когда множество Nj, j = 1, n, — антицепь, получен
в [4].

На реальных задачах проведено эксперимен-
тальное сравнение качества работы алгоритмов
REC, REC+, Random Forest (RF) и Logistic Re-
gression (LR). Алгоритмы REC и REC+ реализо-
ваны авторами на языке С++. Алгоритмы RF
и LR импортированы из библиотеки scikit-learn
[https://scikit-learn.org/stable/]. Дополнительная
настройка методов не проводилась. Данные взя-
ты из репозитория ФИЦ ИУ РАН и из базы данных
UCI [20]. Рассмотрены 6 задач с двумя класса-
ми. Для оценки качества использован известный
функционал — сбалансированная точность. Дан-
ный функционал хорошо себя зарекомендовал при
несбалансированных классах. В случае равномощ-
ных классов сбалансированная точность совпада-
ет с долей верно классифицированных объектов.
Итоговая оценка качества классификации получе-
на усреднением значения функционала качества
по 10 независимым запускам. В каждом запуске
исходные данные случайным образом разделялись
на обучающую и тестовую выборки в соотношении
4 : 1. В табл. 1 для каждой задачи указано число
прецедентов m1 и m2, число признаковn и средняя
значность признака h. Результаты счета приведены
в табл. 2.

Нетрудно видеть, что алгоритм REC+ лидирует
по качеству классификации на четырех задачах из
шести. На каждой из рассмотренных задач время
работы REC не превышает 1 с. Классификатор
REC+ превосходит по качеству работы классифи-
катор REC на пяти задачах, однако работает суще-
ственно медленнее REC из-за необходимого увели-
чения числа признаков в 2 раза (для корректности
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Таблица 1 Размеры задач

Задача m1; m2 n h

Остеосаркома 50; 217 19 25
Инсульт 16; 63 81 2
Манелис 38; 107 35 10

Молекулярная биология 1 (UCI) 767; 768 60 5
Шахматы (UCI) 1527; 1668 36 2

Крестики-нолики (UCI) 626; 332 9 3

Таблица 2 Качество классификации

Задача REC REC+ RF LR
Остеосаркома 0,57 0,60 0,55 0,58

Инсульт 0,62 0,70 0,54 0,55
Манелис 0,74 0,75 0,74 0,77

Молекулярная биология 1 (UCI) 0,97 0,97 0,96 0,92
Шахматы (UCI) 0,97 0,98 0,99 0,96

Крестики-нолики (UCI) 0,98 0,99 0,94 0,64

работы алгоритма признаковые описания объек-
тов дублируются с обратным отношением поряд-
ка). В [7] проведено экспериментальное сравнение
времени работы алгоритма REC и алгоритма го-
лосования по тупиковым представительным ЭК из
направления CVP на реальных и модельных дан-
ных. Показано, что алгоритм REC существенно
превосходит в скорости алгоритм голосования по
тупиковым представительным ЭК на всех рассмот-
ренных наборах данных, не уступая в точности.

Замечание 2. В [21] рассмотрены вопросы распо-
знавания особых структурных сегментов геномов,
называемых промотерами. С использованием мо-
дельного организма Drosophila melanogaster реша-
лась задача бинарной классификации. В качестве
положительных примеров брались участки промо-
теров, а отрицательные примеры представляли со-
бой участки экзонов. На несбалансированной вы-
борке большого объема проведены эксперименты,
в которых кроме REC участвовали такие известные
алгоритмы машинного обучения, как случайный
лес, логистическая регрессия и различные модели
градиентного бустинга. Был рассмотрен традици-
онный способ формирования целочисленных при-
знаков высокой значности, использующий k-ме-
ры, и оригинальная методика прямого применения
классификатора к исходным символьным последо-
вательностям промотеров и экзонов, позволяющая
работать с целочисленными признаками неболь-
шой значности. Оказалось, что во втором случае
качество логической классификации существенно
выше и составляет с использованием ансамблево-
го подхода 94,3% по показателю ROC-AUC, при

этом логический классификатор REC незначитель-
но уступил только классификатору Catboost.

3 Заключение
Представлены новые результаты, касающиеся

изучения метрических (количественных) свойств
множества представительных ЭК, на поиске ко-
торых базируется обучение логических классифи-
каторов. Развита техника получения асимптоти-
ческих оценок для типичных значений важных
количественных характеристик указанного множе-
ства. Доказана асимптотическая оптимальность ал-
горитма перечисления правильных представитель-
ных ЭК, описанного в статье [7].

Разработана модификация на случай частично
упорядоченных данных предложенного в [7] клас-
сификатора REC, использующего процедуру го-
лосования по правильным представительным ЭК.
Получены теоретические оценки типичного чис-
ла правильных ЭК и типичного ранга правильного
ЭК при условии, что признаковые описания объек-
тов — элементы декартова произведения конечных
цепей. Экспериментально подтверждена целесо-
образность задания линейных порядков на множе-
ствах значений признаков в соответствии с частотой
встречаемости значения признака в классе.

Данная проблематика напрямую связана с во-
просами построения нормальных форм логических
функций и оценки сложности такого построения.
Результаты работы имеют значение для практиче-
ских задач логического анализа данных и актуальны
для классической дискретной математики.
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of integer data represented as a set of elements of Cartesian product of finite partially ordered sets (product of
partial orders) are constructed and investigated. At the training stage of the proposed procedures, the search
for so-called regular representative elementary classifiers (special fragments in feature descriptions of precedents
that distinguish objects belonging to different classes) is performed. An asymptotically optimal algorithm for
enumerating the required elementary classifiers over a product of antichains is constructed and the results of its
testing on real-world tasks are presented. Theoretical and experimental justifications for the efficiency of the
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ВОССТАНОВЛЕНИЕ ЦВЕТНЫХ ИЗОБРАЖЕНИЙ МЕТОДОМ

РЕШЕТОЧНЫХ УРАВНЕНИЙ БОЛЬЦМАНА

ДЛЯ АНИЗОТРОПНОЙ НЕЛИНЕЙНОЙ ДИФФУЗИИ

Г. А. Чумарин1

Аннотация: Предлагается способ восстановления поврежденных областей цветных трехканальных изоб-
ражений (задача инпейнтинга) на основе уравнения нелинейной анизотропной диффузии. В качестве
численного алгоритма решения используется решеточное уравнение Больцмана (РУБ) с пятью дискрет-
ными скоростями и несколькими временами релаксации. Направление и интенсивность сглаживания
определяются при помощи структурной матрицы. На основе технологии MPI (Message Passing Interface)
разработана параллельная программная реализация алгоритма с разбиением изображения на подобласти
в декартовой топологии. Рассмотрено приложение нового метода для изображений с дефектами раз-
личной формы и площади. Продемонстрирована корректность восстановления структуры и цветовой
информации в поврежденных областях. На тестовой выборке из 10 000 изображений оценена точность
метода. Проведено сравнение времени работы последовательной и параллельной версии алгоритма.

Ключевые слова: восстановление изображений; инпейнтинг; решеточные уравнения Больцмана; анизо-
тропная диффузия
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1 Введение

Метод РУБ изначально был разработан для
решения уравнений сплошной среды (уравнений
Навье–Стокса) [1] и благодаря простоте программ-
ной реализации и распараллеливания к настоящему
времени широко применяется в различных меж-
дисциплинарных задачах [2–4]. История метода,
его области применения и направления развития,
включая вопросы масштабируемости на современ-
ных архитектурах, подробно рассмотрены в обзо-
ре [5]. В частности, с помощью РУБ можно описы-
вать временн‚ую эволюцию скалярных процессов,
описываемых уравнениями с диффузионными чле-
нами. Было предложено большое число моделей
для уравнений адвекции-диффузии и чистой диф-
фузии [6–11], в том числе для нелинейных [12]
и анизотропных [13, 14] постановок. В связи с этим
РУБ нашли применение в алгоритмах обработки
изображений, основанных на диффузионных урав-
нениях.

Ряд работ посвящен решению уравнений в част-
ных производных для задач шумоподавления. Так,
уравнение Перона–Малика [15,16] моделировалось
РУБ на пяти- и девятискоростных решетках [17,18],
тогда как его расширенные варианты, а также
уравнение Рудина–Ошера–Фатеми решались при
помощи девятискоростной схемы с источника-
ми [19–21]. Отметим, что включение членов типа

источника в РУБ позволяет добавить нелинейные
члены в соответствующие уравнения диффузии, что
часто необходимо в задачах выделения контуров,
восстановления и сегментации изображений. Для
подавления шумов на радиолокационных снимках
в рамках модели реакции—конвекции–диффузии
применялась схема с множественными временами
релаксации [22]. Схемы РУБ для анизотропной
диффузии использовались при сглаживании и сег-
ментации двухмерных и трехмерных медицинских
изображений, в алгоритмах распознавания объек-
тов на изображениях [23–27].

Целью настоящей работы ставится разработка
алгоритма восстановления поврежденных областей
цветных трехканальных изображений на основе
РУБ. Отметим, что задача восстановления изобра-
жений (инпейнтинга) некорректна в том смысле,
что допускает бесконечное множество решений.
В простейшем случае в области дефекта можно
было бы провести усреднение интенсивности каж-
дого пикселя по ближайшим соседям с гауссовой
функцией распределения, убывающей с расстоя-
нием (гауссово сглаживание). Если при этом поло-
жить дисперсию равной

√
2t, то такого же результата

можно достигнуть, решая во времени относительно
функции интенсивности цвета уравнение линей-
ной изотропной диффузии с коэффициентом диф-
фузии, равным единице, приняв в качестве началь-
ного условия исходные значения интенсивности

1Федеральный исследовательский центр «Информатика и управление» Российской академии наук; Московский государственный
университет имени М. В. Ломоносова, физический факультет, chumaringa@gmail.com
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поврежденного изображения. Таким образом, про-
является связь между применением гауссова фильт-
ра и решением во времени уравнений диффузион-
ного типа.

При изотропном сглаживании невозможно
обеспечить корректное продолжение направлен-
ных структур в область дефекта, поэтому в данной
работе предполагается, что интенсивность цвета
пикселя каждого канала подчиняется уравнению
нелинейной анизотропной диффузии. Из разло-
жения Чепмена–Энскога следует, что этому урав-
нению соответствует решеточная схема Больцма-
на с пятью скоростями и несколькими временами
релаксации [13, 28]. Аналитические и численные
исследования показывают, что РУБ для уравнения
диффузии устойчивы при любом временн‚ом шаге
при условии отсутствия конвекции [9,13]. Матрица
релаксации определяется значениями диффузион-
ной матрицы, которая строится так, чтобы вдоль на-
правлений слабого изменения интенсивности цвета
(изофот) сглаживание было максимальным, а в на-
правлении градиента — минимальным. Изофоты
вычисляются при помощи структурной матрицы
в окрестности поврежденных пикселей [16, 29].

Отдельно следует упомянуть другие алгоритмы,
основанные на численном решении дифференци-
альных уравнений. Популярность получили подхо-
ды, основанные на дифференциальных уравнениях
высокого порядка (третьего и четвертого). В част-
ности, модели эйлеровой эластичности (третьего
порядка) обобщают модели, основанные на мини-
мизации полной вариации [30, 31]. Среди уравне-
ний четвертого порядка следует упомянуть модели,
основанные на уравнениях типа Кана–Хилларда,
которые используются в статистической физике для
описания разделения фаз [32–34]. Указывается,
что модели высокого порядка хорошо соединяют
линии уровня, находящиеся на большом рассто-
янии.

Также возможен подход, использующий урав-
нения гиперболического типа. Например, к та-
ким методам относятся шоковые фильтры [35, 36].
В данном случае изменение интенсивности изоб-
ражения пропорционально абсолютным значени-
ям градиента интенсивности, причем коэффициент
при градиенте непостоянен и может менять знак.
Утверждается, что данный метод дает меньше арте-
фактов, чем другие методы. Возможно применение
комбинированного подхода, включающего уравне-
ния Кана–Хилларда (четвертого порядка) и шоко-
вые фильтры [37].

Отметим, что указанные алгоритмы несколько
сложнее в численной реализации, чем диффузи-
онные уравнения второго порядка, рассматрива-
емые в работе, так как их внедрение часто требу-

ет неявных и полуявных разностных схем. Также
сложнее постановка граничных условий. Помимо
диффузионных и вариационных методов, при-
меняемых в настоящей работе, в современной
литературе широко развиваются и альтернатив-
ные подходы к обработке изображений, включая
нейросетевые и оптимизационные методы (см., на-
пример, [38–40]).

Предлагаемый метод решает задачу инпейнтин-
га, продолжая изофоты внутрь требуемой области.
Для ускорения вычислений был разработан алго-
ритм пространственного распараллеливания зада-
чи с использованием технологии MPI. Для оцен-
ки эффективности метода рассмотрена выборка из
10 000 тестовых изображений размера 256×256пик-
селей, на которых случайным образом закрашива-
лась область (белым цветом) и применялся пред-
ложенный алгоритм. Среднее значение индекса
структурного сходства SSIM (Structural Similarity
Index Measure) составило 0,58. Ускорение за счет
параллелизма при запуске на восьми ядрах CPU
достигало 5,5 раза. Подробное обсуждение резуль-
татов численного эксперимента и особенностей па-
раллельного алгоритма приводится в соответству-
ющих разделах.

2 Решеточное уравнение
Больцмана для нелинейной
анизотропной диффузии

Рассмотрим цветное трехканальное изображе-
ние с разрешением N × M пикселей. Введем
в R2 сетку с единичным расстоянием между уз-
лами и выделим прямоугольную область R ⊂ R2,
содержащую N ×M узлов. Множество узлов x =
= (x, y) ∈ R обозначим как Ÿ. Каждому узлу x ∈
∈ Ÿ поставим в соответствие пиксель на исходном
изображении. Определим на множествеR при t ≥ 0
функции I(k)(t,x), k = 1, 2, 3, так, чтобы значение
I(k)(0,x),x ∈ Ÿ, совпадало с интенсивностью цвета
соответствующего пикселя в канале k. Будем счи-
тать, что функции I(k) = I(k)(t,x) при x ∈ R под-
чиняются нелинейному анизотропному уравнению
диффузии

∂I(k)

∂t
=∇ ·

(
D∇I(k)

)
, k = 1, 2, 3. (1)

Здесь D — симметричная диффузионная матрица,
компоненты которой при x ∈ Ÿ и t ≥ 0 зависят от
значений градиентов интенсивностей цвета. В яв-
ном виде
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D=

[
Dxx Dxy

Dxy Dyy

]
, Dαβ=Dαβ

(
∇I(1),∇I(2),∇I(3)

)
,

∇ = (∂x, ∂y),

т. е. эволюция интенсивности I(k)(t,x) k-го кана-
ла зависит от интенсивности остальных через мат-
рицу D, одинаковую для всех уравнений (1).
В данной работе для определения компонент D
используется подход на основе структурной матри-
цы [16, 29].

Рассмотрим поврежденное изображение, в ко-
тором некоторые пиксели имеют неизвестные
или отличные от истинного значения интен-
сивности цвета. Обозначим множество узлов,
соответствующих таким пикселям, через Ÿ0 ⊂
⊂ Ÿ. Задача инпейнтинга состоит в том, что-
бы восстановить значения интенсивности I(k)(t,x)
для x ∈ Ÿ0 и t > 0 на основании извест-
ных в начальный момент времени I(k)(0,x),x ∈
∈ Ÿ\Ÿ0. Введем на множестве Ÿ структур-
ную матрицу J(x), компоненты которой имеют
вид:

J(x) =




Gσ ∗
(
3∑

k=1

∂xI
(k)
θ ∂xI

(k)
θ

)

Gσ ∗
(
3∑

k=1

∂yI
(k)
θ ∂xI

(k)
θ

)

Gσ ∗
(
3∑

k=1

∂xI
(k)
θ ∂yI

(k)
θ

)

Gσ ∗
(
3∑

k=1

∂yI
(k)
θ ∂yI

(k)
θ

)



,

где ∗ — операция свертки с гауссовым ядром Gσ

со стандартным отклонением σ; I
(k)
θ — интен-

сивность цвета в канале k, сглаженная фильтром
Гаусса со стандартным отклонением θ, обычно
меньшим, чем расстояние между узлами, соответ-
ствующими пикселям, δx = 1. Решением спек-
тральной задачи для структурной матрицы будут
следующие собственные значения и собственные
векторы:

µ1,2 =
1

2

(
Jxx + Jyy ±

√
(Jxx − Jyy)2 + 4J2xy

)
;

v1 =
(
2Jxy, Jyy − Jxx +

√
(Jxx − Jyy)2 + 4J2xy

)
;

v2 =
(
2Jxy, Jyy − Jxx −

√
(Jxx − Jyy)2 + 4J2xy

)
.

Собственный вектор v2, соответствующий мини-
мальному собственному значению µ2, указывает
направление наименьшего изменения цветового
сигнала в окрестности размера O(σ) точки x (изо-
фота). Для восстановления изображения изофоты

должны быть продолжены внутрь поврежденных
областей, поэтому значение σ должно быть вы-
брано больше размера дефекта. Если собственные
значения различаются слабо, то в данной области
отсутствуют выделенные направления изменения
цвета (изотропная структура) и диффузия должна
быть изотропной. Таким требованиям удовлетво-
ряет диффузионная матрица

D = ˜ diag (λ1, λ2)˜
T, (2)

где ˜ = (v1,v2) — матрица, составленная из нор-
мированных собственных векторов. Элементы диа-
гональной матрицы diag (λ1, λ2) определяются из
условий

λ1 = α;

λ2 =





α,

c1

(
α+ (1− α) exp

(
− c2
|µ1 − µ2|

))
;

где c1 ≫ α > 0; c2 > 0; α ∈ (0, 1). При µ2 ≫ µ1
диффузионное сглаживание интенсивно вдоль изо-
фот (коэффициент диффузии λ2 ≈ α + c1) и слабо
выражено в перпендикулярном направлении (ко-
эффициент диффузии λ1 = α ≪ λ2). В случае
однородного фона (µ1 ≈ µ2) имеем изотропное
уравнение диффузии с коэффициентом λ1 = λ2 =
= α. Значенияα, c1 и c2 определяются эмпирически
и будут заданы в разд. 4, посвященном численному
эксперименту.

Для численного решения уравнений (1) вос-
пользуемся РУБ с пятью дискретными скоростя-
ми [13, 28]:

f
(k)(t+ δt,x+ cδt) − f (k)(t,x) =

− δtM−1
SM(f eq(k)(t,x)− f (k)(t,x)), k=1, 2, 3, (3)

где c = (c1, c2, c3, c4, c5); f (k) = (f
(k)
1 , f

(k)
2 , f

(k)
3 ,

f
(k)
4 , f

(k)
5 ), f

(k)
i ≥ 0, — дискретно-скоростные функ-

ции распределения частиц с дискретными скоро-
стями ci; f eq

(k)(t,x) — вектор функций локально-
равновесного распределения. Шаг решетки δx = 1.
Узлы решетки соответствуют пикселям изображе-
ния, как это определено выше. Зададим шаг по
времени δt. Тогда дискретные скорости определят-
ся как

c1 = (0, 0); c2,3 = (±c, 0), c4,5 = (0,±c),

c =
δx

δt
> 0.

Матрицы преобразования в пространство момен-
товM и релаксации S примут вид:
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M =




1 1 1 1 1
0 1 −1 0 0
0 0 0 1 −1
4 −1 −1 −1 −1
0 1 1 −1 −1



;

S =




τ−11 0 0 0 0
0

T
−1 0 0

0 0 0
0 0 0 τ−14 0
0 0 0 0 τ−15



, T =

[
τxx τxy

τxy τyy

]
,

где τ1, τxx, τxy, τyy, τ4 и τ5 — времена релак-
сации. Матрица M осуществляет линейное пре-
образование из пространства дискретных функций
распределения f

(k)
i в пространство их линейных

комбинаций — моментов. Такой переход позволяет
независимо задавать времена релаксации τn различ-
ных моментов с помощью диагональной матрицы
релаксации S. Возврат из пространства момен-
тов в пространство функций распределения осуще-
ствляется через умножение наM−1, что и опреде-
ляет вид оператора столкновений с несколькими
временами релаксации. Более подробно о про-
цедуре построения матрицы преобразования и об
операторе столкновения с несколькими временами
релаксации рассказывается в работах [3, 13].

ПустьL— характерный размер объекта на изоб-
ражении, τ — наибольшее собственное значение
матрицы T . Если в качестве малого параметра
в разложении Чепмена–Энскога взять ǫ = cτ/L,
то можно показать, что модель (3) становится раз-
ностной схемой второго порядка точности по про-
странству и времени для уравнений (1) [13, 28], т. е.
в пределе ǫ→ 0 схема (3) эквивалентна уравнениям
нелинейной анизотропной диффузии (1), причем
имеет место равенство

T =
5

2c2
D+

δt

2
E2, (4)

где E2 — квадратная единичная матрица размер-
ности 2.

Все компоненты вектора функций локально-
равновесного распределения f eq(k)(t,x) одинаковы
и в любой момент времени определяются интен-
сивностью k-го канала:

f eq(k)(t,x) =
I(k)(t,x)

5
, t ≥ 0, k = 1, 2, 3.

При t > 0 интенсивность k-го канала определяется
с помощью схемы (3) как момент первого порядка
функций распределений

I(k)(t,x) =

5∑

i=1

f
(k)
i (t,x), k = 1, 2, 3.

Матрица T в каждой точке x ∈ Ÿ вычисляется
по формуле (4), где D — диффузионная матрица,
определяемая выражением (2). Отметим, что зна-
чения времен релаксации τ1, τ4 и τ5 не влияют на
найденное по схеме (3) решение уравнения анизо-
тропной диффузии, но могут сказываться на устой-
чивости схем РУБ при наличии в них адвективных
членов; более подробно эта проблема обсуждается
в работе [13]. Далее в численных экспериментах
значения τ1, τ4 и τ5 задавались равными 1.

Таким образом, уравнения (3) описывают про-
странственно-временн‚ую эволюцию функций рас-
пределения и, следовательно, интенсивностей цве-
та I(k)(t,x), k = 1, 2, 3. В свою очередь, алгоритм
инпейнтинга заключается в численном решении
с помощью схемы (3) следующей задачи:

∂I(k)

∂t
=∇ ·

(
D∇I(k)

)
, x ∈ Ÿ0, k = 1, 2, 3;

I(k)(0,x) = 0, x ∈ Ÿ0, k = 1, 2, 3;
I(k)(t,x) = I(k)(0,x), x ∈ Ÿ\Ÿ0, t ≥ 0,

k = 1, 2, 3.





(5)

Начальные значения интенсивностей в поврежден-
ных областях предполагаются равными нулю. Вос-
становленным считается изображение, в котором
интенсивность цвета пикселей, соответствующих
узлам x ∈ Ÿ0, совпадает с решением задачи (5) в не-
который момент времени t∗. В численных экспе-
риментах в качестве t∗ выбирается фиксированное
конечное время, для которого изменение реше-
ния во времени становится визуально незаметным,
и именно это поле интенсивностей I(k)(t∗,x) ин-
терпретируется как восстановленное изображение.
Данный критерий выбора t∗ используется в силу его
простоты. Рассмотрение других возможных крите-
риев и поиск оптимального оставим для будущих
работ.

3 Параллельный алгоритм
расчетов

Для численного решения задачи (5) разработа-
на параллельная программа на языке C++ с при-
менением технологии передачи сообщений MPI
и библиотеки OpenCV. Архитектура программы со-
ответствует модели SPMD (Single Program, Multi-
ple Data), распределение и сбор данных выполня-
ются корневым процессом, после инициализации
в вычислениях участвуют все процессы. Основ-
ной целью разработки ставилось ускорение работы
алгоритма за счет распараллеливания по простран-
ственным областям изображения. Для обмена дан-
ными между процессами используется коммуника-
тор MPI, в котором задана виртуальная двухмерная
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декартова топология. Для регулярных обме-
нов массивами данных используются персистент-
ные неблокирующие операции типа точка–точка
(MPI Send init/MPI Recv init с последующими за-
пусками MPI Startallи MPI Waitall), что снижает
накладные расходы на инициализацию сообщений
и позволяет перекрывать коммуникации вычисле-
ниями.

Обработка изображений организована в виде
цикла по паре входных данных: трехканальному
изображению с дефектами и одноканальной маске
того же размера. Маска представляет собой черный
фон (значение интенсивности I(x) = 0, x ∈ Ÿ\Ÿ0)
с белыми пикселями, расположение которых со-
впадает с поврежденными пикселями восстанав-
ливаемого изображения (значение интенсивности
I(x) = 255,x ∈ Ÿ0). На корневом процессе входные
данные считываются и область обработки сужается
до минимального прямоугольника, включающего
ненулевые значения маски. Его размеры определя-
ются радиусом гауссова ядра ρ = 3σ, как показано
на рис. 1, a.

Далее изображение приводится к формату
CV 32FC3 (матрица с тремя каналами, каждый эле-
мент есть 32-битное число с плавающей точкой)
и нормируется в диапазон [0, 1]. Для рассылки
прямоугольных фрагментов на корневом процессе
с помощью MPI Type create subarrayформирует-
ся производный тип, описывающий соответству-
ющий блок в двумерной сетке. Затем подмассивы

отправляются вызовами MPI Isend на рабочие про-
цессы в локальные буферы. По результатам этапа
подготовки данных на каждом процессе содержатся
свои фрагменты матриц интенсивности и бинарной
маски. Также инициализируются 15 матриц размера
подобласти с типом CV 32FC3: 5 для значений ко-
ординат вектора функций распределения f (k), 5 для
разности fneq(k) = f eq(k)−f (k), требующейся на шаге
столкновения, и 5 для вектора обновленных функ-
ций распределения f∗(k) = f (k) + δtM−1

SMf
neq(k),

требующихся на шаге переноса. Начальные значе-
ния координат вектора f (k) устанавливаются равны-
ми 0, 2I(k), а координат вектора fneq(k) — равными
нулю.

Для вычисления градиентов и шага адвекции
каждый процесс обменивается приграничными
слоями с соседними, причем вычисление горизон-
тальных и вертикальных градиентов организова-
но в виде последовательных двойных циклов по
координатам (для доступа к данным используется
прямое индексирование по указателям) так, чтобы
обмен значениями интенсивности между прилега-
ющими процессами происходил на фоне расчета
x-градиента во внутренней области (зеленый пря-
моугольник на рис. 2). После обмена x-градиент
вычисляется в граничных точках, y-градиент — во
всей области.

Сглаживание компонент структурной матри-
цы производится последовательно по горизонтали
и вертикали. Такое разбиение корректно, так как

Рис. 1 Сужение вычислительной области Ÿ до прямоугольника, содержащего поврежденную область Ÿ0; мини-
мальное расстояние от граничных точек Ÿ0 до прямоугольника соответствует радиусу гауссова ядра ρ; наложенная
сетка иллюстрирует разбиение изображения на подобласти, закрепленные за отдельными процессами виртуальной
двумерной декартовой топологии (a); формирование подкоммуникаторов строк для горизонтальных обменов дан-
ными (б); формирование подкоммуникаторов столбцов для вертикальных обменов данными (в). Цвета показывают
принадлежность процессов соответствующему подкоммуникатору
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Рис. 2 Иллюстрация вычисления градиентов и шага
переноса. Пиксели изображены в виде окружностей.
Красным цветом отмечены пиксели изображения, при-
надлежащие внутреннему процессу и участвующие
в вычислениях. Зеленым прямоугольником выделена
область, в которой x-градиент вычисляется без исполь-
зования данных соседних процессов. Фиолетовым пря-
моугольником показаны точки, где без информации от
смежных процессов осуществляется адвекция. Синим
цветом обозначены пиксели соседних процессов, участ-
вующие в обмене сообщениями, черным — неучаству-
ющие

двумерное гауссово ядро сепарабельно, т. е. предста-
вимо в виде произведения двух одномерных. По-
ка вычисляется y-градиент, на корневые процессы
подкоммуникаторов строк (см. рис. 1, б) от осталь-
ных процессов подкоммуникатора поступают мас-
сивы значений Jxx. С помощью cv::sepFilter2D
выполняется горизонтальная свертка. На ее фоне
происходит аналогичный сбор Jxy и Jyy массивов.
По завершении сглаживания Jxx соответствующие
фрагменты данных рассылаются с корневых про-
цессов подкоммуникаторов строк обратно рабочим
процессам (на фоне свертки Jxy и Jyy), откуда
уже в подкоммуникаторе столбцов отправляются
на корневые процессы для вертикальной свертки
(см. рис. 1, в). Далее по вертикали выполняются
аналогичные шаги, по итогу на каждом процессе
исходного коммуникатора с декартовой топологи-
ей соберутся сглаженные компоненты структурной
матрицы.

Следующий этап — шаг столкновения. Для
дополнительной оптимизации область обработки
сужается до минимального прямоугольника, со-
держащего поврежденную область Ÿ0 с отступом

в один пиксель. Тогда шаг переноса будет осуще-
ствляться во всех точках этого прямоугольника, за
исключением граничных. Если дефект локализован
на части процессов, то при наличии дополнитель-
ных ядер в системе их можно задействовать для рас-
параллеливания последующих циклов с помощью
технологии OpenMP. В двойном цикле по координа-
там рассчитываются собственные значения и век-
торы структурной матрицы, согласно (2) строится
диффузионная матрица и выполняется столкнове-
ние частиц в пространстве моментов (правая часть
уравнения (3)). В результате на каждом процессе
имеются значения вектора обновленных функций
распределения f∗(k).

Наконец на шаге адвекции происходит перенос
обновленных функций распределения f∗(k) на со-
седние узлы решетки и одновременное обновление
f
(k), f eq(k) и интенсивности. Вне области маски эти

значения остаются неизменными. Обмен данными
между узлами соседних процессов осуществляется
на фоне вычислений во внутренней области (фио-
летовый прямоугольник на рис. 2).

После достижения заданного числа итераций
локальные результаты собираются на корневом
процессе. Отметим, что предложенная схема реа-
лизует лишь пространственное распараллеливание
задачи. Такой подход согласуется со свойством
локальности метода РУБ. Однако процедура коге-
рентного усиления с использованием гауссова раз-
мытия нелокальна и при вычислении структурной
матрицы в каждой точке требует данных от мно-
жества соседних процессов. Очевидно, что дан-
ный этап плохо масштабируемый и дорогостоящий
с точки зрения накладных расходов. Тем не менее
в разработанном алгоритме предпринята попытка
минимизации этих затрат за счет разложения двух-
мерной свертки на две одномерные.

4 Численный эксперимент

В первом численном эксперименте рассматри-
вается восстановление тестового изображения trees
с разрешением 350×258пикселей (рис. 3). Повреж-
денная часть имеет вид сетки, проходящей через все
изображение. Толщина поврежденной области со-
ставляет 7 пикселей. Выбирались следующие пара-
метры для численного моделирования: α = 0,05;
c1 = 300; c2 = 0,0001; величина стандартного
отклонения σ гауссова фильтра должна браться
больше размера дефектов. В данном случае σ =
= 12, предварительное сглаживание изображения
не проводилось (θ = 0). Для решения задачи (5)
используется схема (3) с временн‚ым шагом δt =
= 0,5, расстояние между пикселями считается рав-
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Рис. 3 Изображения trees (верхняя панель) и trailer (нижняя панель). Применение РУБ (3) к задаче восстановления
изображений (5): (а) и (д) начальные изображения; (б) и (е) поврежденные изображения; (в) результат в момент
времени t = 50; (г) результат в момент времени t = 500; (ж) результат в момент времени t = 1000

ным единице: δx = 1; в качестве начального изоб-
ражения I(k)(0,x) берется изображение trees с на-
ложенной сеткой. Результаты расчетов для разных
моментов времени приведены на рис. 3 (все рисун-
ки создавались с использованием GIMP). В момент
времени t ≥ 100 получается стационарное решение
диффузионного уравнения, финальный результат
приведен на рис. 3, г для t = 500. Видно, что го-
ризонтальные и вертикальные полосы практически
удалены.

Во втором численном эксперименте обрабаты-
вается изображение trailer с разрешением 1024×683
(см. рис. 3). Поврежденная область представляет
собой концентрические кольца толщиной 10 пик-
селей. Радиус размытия σ = 15, остальные па-
раметры брались такими же, как и в предыдущем
эксперименте. Результат восстановления для мо-
мента времени t = 1000 приведен на рис. 3, ж.
Данное изображение удается восстановить практи-
чески без ошибок, остаточные искажения на од-
нородном фоне иллюстрируют свойство алгоритма
воспринимать протяженные дефекты как когерент-
ные структуры, требующие усиления.

Для измерения времени выполнения па-
раллельного алгоритма использовалась функция
MPI Wtime() из библиотеки MPI, а для последова-
тельного алгоритма — средства стандартной биб-
лиотеки C++ <chrono>. Эксперименты прово-
дились на системе с восьмиядерным процессором
Intel Core i9-11900KF. Для изображения trailer вре-
мя выполнения временн‚ого цикла по сравнению

с последовательной версией программы сократи-
лось в 5,5 раза (196,8 против 35,8 с при запуске на
8 процессах). Отметим, что этап свертки с гауссо-
вым ядром оказался самым вычислительно доро-
гим, ускорение для него составило 1,8 раза (13,6
против 25,0 с). Таким образом, для части кода,
отвечающей за численное решение РУБ (без учета
времени на размытие) ускорение оказалось семи-
кратным. Для изображения большего разрешения
эффект параллельных расчетов оказался более вы-
раженным. Так, для изображения trees ускорение
временн‚ого цикла достигло 4,1 раза (13,0 против
3,2 с). При этом накладные расходы на этапе сгла-
живания матричных компонент сильнее отразились
на значении ускорения, составившем 1,3. Однако
ускорение численного алгоритма за вычетом сверт-
ки пятикратно.

В третьем эксперименте оценивается точность
и производительность алгоритма для первых 10 000
изображений разрешения 256× 256 из базы данных
places [41]. На каждом из изображений случайным
образом выделялся дефект, представляющий со-
бой объединение нескольких эллипсов белого цве-
та. Общее число пикселей в поврежденной области
равнялось примерно 500. В ходе эксперимента шаг
по времени брался равным δt = 0,5, число шагов
по времени равно 150, радиус размытия σ = 15,
остальные параметры и конфигурация вычисли-
тельной системы такие же, как и в предыдущих
экспериментах. Общее время работы параллель-
ной программы при запуске на 8 ядрах составило
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Рис. 4 Изображение из датасета places. Результат применения РУБ (3) для анизотропной диффузии к задаче (5)
восстановления изображений из выборки places: (a) изображение с поврежденной областью; (б) результат обработки;
(в) исходное изображение

614 с, т. е. 0,06 с на одно изображение. Для оценки
качества восстановления изображений использует-
ся индекс структурного сходства (SSIM), вычисля-
емый для каждой пары оригинального a и восста-
новленного b изображений в поврежденных частях
изображений по формуле:

SSIM =

∑
x∈Ÿ0

(1/3)
∑3

k=1
SSIM(k)(x)

|Ÿ0|
,

SSIM(k)(x) =
2µ(k)a (x)µ

(k)
b (x) + C1

(µ(k)a (x))
2 + (µ

(k)
b (x))

2 + C1
×

× 2σ
(k)
ab (x) + C2

(σ(k)a (x))
2 + (σ

(k)
b (x))

2 + C2
, k = 1, 2, 3,

где µ(k)a , µ
(k)
b , σ(k)a , σ(k)b и σ

(k)
ab суть средние интен-

сивности, стандартные отклонения и ковариация
интенсивности изображений a и b, вычисляемые
в окне радиуса r пикселей с центром в точке x, по
каналу k. Для расчетов выбиралось r = 3. Кон-
станты C1 = (0, 01L

(k))2 и C2 = (0, 03L(k))2 зависят
от диапазона значений интенсивности k-го канала.
Число пикселей в поврежденной области обозна-
чено как |Ÿ0|. Индекс принимает значения в ин-
тервале от −1 до 1, при этом в задачах обработки
естественных изображений практически все значе-
ния находятся в интервале [0, 1]. Значения, близкие
к 1, соответствуют высокой структурной близости
локальных фрагментов изображений, а значения,
близкие к 0 и ниже, указывают на существенные
различия [42]. Среднее значение SSIM по выборке
равно 0,58, стандартное отклонение — 0,2, мини-
мальное значение равно 0,04, максимальное — 1.
Полученные значения показывают, что в значи-
тельной части случаев восстановленные фрагменты
обладают умеренной структурной близостью к ис-
ходным. В качестве примера на рис. 4 приведен

результат обработки изображения из начала выбор-
ки. Полный набор изображений из эксперимен-
та, маски, соответствующие поврежденным обла-
стям, и результаты обработки доступны по ссылке
https://data.mendeley.com/datasets/njys4dhgh8/1.

5 Заключение

В данной работе рассмотрена задача восста-
новления цветных трехканальных изображений
(inpainting) на основе процессов анизотропной не-
линейной диффузии, решаемых с помощью парал-
лельного алгоритма для РУБ. В качестве приложе-
ния нового метода рассмотрены задачи удаления
протяженных дефектов с изображений, в частности
оценена точность метода для выборки из 10 000
изображений (среднее SSIM равно 0,58), на кото-
рых случайным образом выделены поврежденные
области.

Предложенный метод реализует направленное
продолжение информации в область дефекта. Вос-
становление определяется исключительно струк-
турой изображения в окрестности границы по-
врежденной области. Следовательно, если дефект
перекрывает значимую часть объекта, полностью
уничтожая его визуальные признаки, то алгоритм
не может «догадаться» о существовании объекта
и он не появится в результате восстановления.

Напротив, если дефект имеет такую форму и раз-
меры, что правдоподобное продолжение возможно
за счет продления направленных структур или од-
нородного фона внутрь, то метод демонстрирует
корректную работу, что подтверждается численны-
ми экспериментами. Однако имеют место огра-
ничения, связанные с размером дефекта. Так, при
постоянном радиусе размытия для точек внутри по-
врежденной области уменьшается число пикселей,
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Восстановление цветных изображений методом РУБ для анизотропной нелинейной диффузии

участвующих в сглаживании компонент структур-
ной матрицы. Другими словами, снижается ко-
личество информации о направленности структур
в окрестности таких точек, и качество восстано-
вления ухудшается. При этом увеличение радиуса
размытия помимо негативного влияния на про-
изводительность алгоритма может сказаться и на
качестве восстановления значений интенсивности
в пикселях, расположенных вблизи границы де-
фекта. В таком случае при анализе сглаженных
градиентов интенсивности будет учитываться вклад
от структур, возможно, не относящихся к интере-
сующей области. Вероятным решением данной
проблемы представляется динамическое определе-
ние радиуса размытия в зависимости от положения
пикселя в области дефекта. Рассмотрение это-
го вопроса, а также подбор оптимальных метрик
для оценки качества восстановления планируются
в дальнейших работах.

В заключение отметим дополнительные на-
правления будущих исследований. Интерес пред-
ставляет продолжение разработки алгоритмов па-
раллельных расчетов для РУБ, в том числе
с использованием GPU (graphics processing unit).
Также перспективным выглядит построение ал-
горитмов восстановления изображений на основе
РУБ для диффузионных уравнений более высокого
порядка (с гипердиффузионными членами).

Автор выражает благодарность Олегу Ильину за
ценные обсуждения и замечания.
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Color image restoration via the lattice Boltzmann method for anisotropic nonlinear diffusion

COLOR IMAGE RESTORATION VIA THE LATTICE BOLTZMANN

METHOD FOR ANISOTROPIC NONLINEAR DIFFUSION
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Abstract: The work proposes a method for restoring damaged regions of color three-channel images (the inpainting
problem) based on the equation of nonlinear anisotropic diffusion. As the numerical solution algorithm, the lattice
Boltzmann equation with five discrete velocities and multiple relaxation times is employed. The direction and
intensity of the smoothing are determined using the structure matrix. A parallel implementation of the algorithm
has been developed using MPI (Message Passing Interface) technology with image domain decomposition in
a Cartesian topology. The application of the proposed method to images with defects of various shapes and sizes is
examined. The results demonstrate the correctness of structural and color information restoration in the damaged
regions. The accuracy of the method is evaluated on a test set of 10,000 images, and the execution times of
sequential and parallel versions of the algorithm are compared.
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ОПТИМИЗАЦИЯ ПО КВАНТИЛЬНОМУ КРИТЕРИЮ

ПОЗИЦИОННОЙ СТРАТЕГИИ ТЕСТИРУЕМОГО

В ДИНАМИЧЕСКОЙ МОДЕЛИ ПРОХОЖДЕНИЯ

ОГРАНИЧЕННОГО ПО ВРЕМЕНИ ТЕСТА

С. В. Иванов1, Я. Г. Мартюшова2, А. В. Наумов3, А. Е. Степанов4

Аннотация: Рассматривается задача построения оптимальной программной и позиционной стратегии
в динамической модели прохождения ограниченного по времени теста. Тестируемый последовательно
решает задания теста, набирая за каждое задание определенное число баллов в случае правильного
решения. Правильность решения тестируемым каждого задания моделируется случайной величиной
с распределением Бернулли. Случайным считается также время, затраченное на решение каждого зада-
ния. В качестве позиционной стратегии выступает функция от числа баллов, набранных после решения
очередного задания, и суммарного времени, затраченного на решения предыдущих заданий теста. Функ-
ция принимает значение единица, если тестируемый решает очередное задание, и ноль, если пропускает.
В качестве критерия выступает число набранных за тест баллов, превышение которого при одновремен-
ном выполнении ограничения на время выполнения теста гарантируется с выбранным заранее уровнем
доверительной вероятности, выступающим параметром задачи. Для решения рассматриваемых задач ис-
пользуется свойство эквивалентности между задачей с квантильным критерием и задачей максимизации
соответствующей функции вероятности, после чего используется модификация предложенного ранее
авторами алгоритма решения аналогичной задачи с вероятностным критерием качества.

Ключевые слова: ограниченный по времени тест; динамическая модель; позиционная стратегия; кван-
тильный критерий
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1 Введение

Теория адаптивного тестирования и обучения
активно развивается на протяжении последних де-
сятилетий [1–9]. Как правило, целью адаптации
ставится формирование индивидуальной траекто-
рии обучения или прохождения теста [5–7]. Адап-
тация происходит на основе обработки статисти-
ки решения тестируемыми заданий, аналогичных
заданиям в тесте. Такая статистика обычно хранит-
ся в современных компьютеризированных систе-
мах обучения и тестирования, например в систе-
ме дистанционного обучения CLASS.NET [10, 11]
Московского авиационного института. Для дости-
жения цели адаптации используются современные
методы машинного обучения и искусственного ин-
теллекта [6, 7, 12]. Для учета влияния случайных
факторов на процесс принятия решения в системах
тестирования используются случайные величины
с различными законами распределения [2, 13, 14].
Достаточно полный обзор современных подходов

к формированию адаптивных тестов В рамках тео-
рии CAT (computerized adaptive testing) предложен
в первой части работы [15]. Все рассмотренные
в этой работе подходы направлены на формиро-
вание организаторами тестирования наилучших по
определенному критерию тестов с целью наиболее
объективного оценивания уровня знаний тестиру-
емых.

Структура теста часто известна заранее, напри-
мер при подготовке абитуриентов к сдаче единого
государственного экзамена (ЕГЭ). Это побуждает
тестируемых вырабатывать собственную стратегию
прохождения теста, исходя из целей, которые они
ставят перед собой. Подобные задачи рассмотре-
ны в работах [16–19]. При этом в работах [16–18]
рассматриваются статические модели поиска опти-
мальной программной стратегии тестируемого в ви-
де набора заданий теста, которые предполагаются
к решению в выделяемое на тест время. В каче-
стве критериев выбора стратегии рассматриваются
вероятностный [16], квантильный [17] и критерий

1Московский авиационный институт (национальный исследовательский университет), sergeyivanov89@mail.ru
2Московский авиационный институт (национальный исследовательский университет), ma1554@mail.ru
3Московский авиационный институт (национальный исследовательский университет), naumovav@mail.ru
4Московский авиационный институт (национальный исследовательский университет), Rus.fta@yandex.ru
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в форме математического ожидания среднего числа
набранных за тест баллов [18], который максими-
зируется при условии выполнения вероятностного
ограничения на время выполнения теста. В ра-
боте [19] рассматривается вероятностная модель
прохождения ограниченного по времени теста, ко-
гда ищется позиционная стратегия тестируемого
как функция от набранного числа баллов и за-
траченного на решения времени после решения
очередного задания теста. В качестве критерия вы-
ступает вероятность набора тестируемым за тест
не менее некоторого фиксированного числа бал-
лов.

В данной работе продолжается исследование
динамической модели прохождения ограничен-
ного по времени теста, но, в отличие от [19],
рассматривается квантильный критерий. Приво-
дятся условия эквивалентности по стратегии рас-
сматриваемой задачи и задачи с вероятностным
критерием [19]. Доказывается соответствующее
утверждение. Приводятся результаты численного
эксперимента.

2 Описание модели и задачи
синтеза управления

Рассматривается динамическая система, описы-
вающая прохождение тестирования студентом [19].
Переменными состояния в этой системе слу-
жатTk — время, затраченное на выполнение первых
k заданий, и Sk — суммарный балл, набранный за
решения этих заданий, k = 1, n.

Стратегия студента определяется набором пере-
менных u = (u1, . . . , un), в котором uk = 1, если
студент пытается решать k-е задание, и uk = 0, если
k-е задание пропускается. За правильное решение
k-й задачи студент получает bk баллов. Будем счи-
тать, что bk — натуральные числа. Правильность
выполнения k-го задания описывается случайной
величиной Xk, которая равна 1, если k-е задание
выполнено верно, и 0 в противном случае.

Время выполнения теста ограничено величи-
ной �T . Время выполнения k-го задания описыва-
ется случайной величиной τk. Предполагается, что
распределение случайной величины τk дискретное
с конечным числом возможных исходов. Также
предполагается, что для всех k = 2, n сигма-алгеб-
ра, порожденная случайными величинами Xk и τk,
не зависит от cигма-алгебры, порожденной случай-
ными величинами X1, . . . , Xk−1, τ1, . . . , τk−1. Это
предположение означает, что ответ на текущие во-
просы теста не влияет на дальнейшее прохождение
тестирования.

Таким образом, динамическая система имеет
вид:

Sk = Sk−1 + bkXkI
{
Tk ≤ �T

}
uk ; (1)

Tk = Tk−1 + τkuk ; (2)

T0 = 0 , S0 = 0 , k = 1, n ,

где I{·} — индикатор события, стоящего в скобках,
равный 1, если условие выполнено, и 0 в противном
случае.

Введем функцию вероятности, равную вероят-
ности получения балла не менее ϕ:

P1ϕ, �T = P{S(u) ≥ ϕ},

где S(u) — случайная сумма баллов, равная вели-
чине Sn, при выбранном управлении u, a под P{·}
понимается вероятность события, стоящего в скоб-
ках. Описанное выше управление u определяет
программную стратегию.

Если студенту при решении k-й задачи доступ-
на информация о правильности решения предыду-
щих заданий и прошедшем с начала тестирования
времени, может быть использована позиционная
стратегия. Позиционная стратегия определяется
значениями функций uk(Tk−1, Sk−1), k = 1, n, рав-
ными 1, если студент пытается решать k-е задание,
и 0, если k-е задание пропускается. Предполагает-
ся, что Tk−1 и Sk−1 принадлежат конечным множе-
ствам Tk−1 и Sk−1 соответственно. Позиционная
стратегия обозначается через u = (u1, . . . ,un), a че-
рез S(u) — случайная сумма баллов Sn, определя-
емая уравнениями (1) и (2) при подстановке в них
uk = uk(Tk−1, Sk−1), k = 1, n. Функция вероят-
ности при использовании позиционной стратегии
имеет вид:

P2ϕ, �T (u) = P{S(u) ≥ ϕ}.

В данной статье рассматриваются задачи макси-
мизации функций квантили

ϕ1α(u) = max
{
ϕ|P1ϕ, �T (u) ≥ α

}
→ max

u∈{0,1}n
; (3)

ϕ2α(u) = max
{
ϕ|P2ϕ, �T (u) ≥ α

}
→ max
u∈U

, (4)

где α ∈ (0; 1)— заранее выбранный уровень надеж-
ности;U — множество всех функций из⊗n−1

k=0Tk×Sk

в множество {0, 1}n. Значение функции квантили
показывает максимальный балл, гарантированный
с вероятностью не менее α.

66 ИНФОРМАТИКА И ЕЁ ПРИМЕНЕНИЯ том 19 выпуск 4 2025



Оптимизация по квантильному критерию позиционной стратегии тестируемого в модели прохождения теста

3 Сведение задачи квантильной
оптимизации к задаче
максимизации вероятности

В [19] рассматривались задачи максимизации
функций вероятности

u∗ϕ = (u1, . . . , un) ∈ argmax
u∈{0,1}n

P1ϕ, �T (u) ; (5)

u
∗
ϕ = (u

∗
1, . . . ,u

∗
n) ∈ argmax

u∈U
P2ϕ, �T (u). (6)

Алгоритмы решения данных задач представлены
в [19].

Опишем, каким образом из решения задачи (5)
можно получить решение задачи (6). Поскольку
баллы bk целочисленны, функция ϕ 7→ P1

ϕ, �T
(u) ку-

сочно-постоянная со скачками в целочисленных
значениях ϕ. Будем считать, что известны реше-
ния задач (5) для всех целочисленных значений
ϕ ∈ {0, . . . ,�b}, где �b =

∑n
k=1 bk. Введем функцию

P∗(ϕ) = maxu∈{0,1}n P1
ϕ, �T
(u).

Утверждение. Пусть для целочисленных ϕ1 < ϕ2,
ϕ1, ϕ2 ∈ {0, . . . ,�b}, выполнено неравенство P∗(ϕ1) >
> P∗(ϕ2). Тогда для всех ϕ ∈ {0, . . . ,�b} страте-

гия u∗ϕ будет решением задачи (3) при любых α ∈
∈ (P∗(ϕ+ 1),P∗(ϕ)].
Д о к а з а т е л ь с т в о . Справедливо следующее со-
отношение, известное как лемма Розенблатта [20]:

{
u ∈ {0, 1}n|P1ϕ, �T (u) ≥ α

}
=

=
{
u ∈ {0, 1}n|ϕ1α(u) ≥ ϕ

}
. (7)

Пусть P∗(ϕ) = P1
ϕ, �T
(u∗ϕ) = α∗, P∗(ϕ + 1) = α′ <

< α∗. Из (7) следует, что ϕ1α∗(u∗ϕ) ≥ ϕ. Предпо-
ложим, что ϕ1α∗(u∗ϕ) = ϕ′ > ϕ. Отметим, что ϕ′ —
целочисленное. Тогда из монотонности функции
ϕ 7→ P∗(ϕ) следует неравенство P∗(ϕ′) < α∗, кото-
рое противоречит равенству (7). Поэтомуϕ1α∗(u∗ϕ) =
= ϕ. Это равенство доказывает оптимальность u∗ϕ
в задаче (3) для α = P∗(ϕ)

Если α ∈ (P∗(ϕ + 1),P∗(ϕ)], то для всех u вы-
полнено P1

ϕ+1, �T
(u) < α. Тогда из (7) следует, что

ϕ1α(u) < ϕ + 1 или ϕ1α(u) ≤ ϕ (поскольку ϕ цело-
численно). С другой стороны, из (7) получается
неравенство ϕ1α(u

∗
ϕ) ≥ ϕ. Это и означает оптималь-

ность u∗ϕ в задаче (3). Утверждение доказано.

Аналогичное утверждение верно и для зада-
чи (4). Его доказательство полностью аналогично
приведенному выше доказательству для задачи (3).

Приведем краткие описания алгоритмов реше-
ния задач (5) и (6) из статьи [19]. Значение целе-
вой функции (5) при фиксированной программной

стратегии u может быть вычислено с помощью ре-
куррентных соотношений:

Bu
n+1(Tn, Sn) = I {Sn ≥ ϕ} ;

Bu
k (Tk−1, Sk−1) =

=M
[
Bu

k+1 (Tk−1 + τkuk, Sk−1 +

+ bkXkI
{
Tk−1 + τkuk ≥ �T

})
|Tk−1, Sk−1

]
.

Из формулы полной вероятности следует, что
P1

ϕ, �T
(u) = Bu

1 (0, 0) Выбор оптимальной стратегии u
может быть осуществлен с помощью алгоритма,
основанного на методе ветвей и границ [19].

Для решения задачи (6) используется метод ди-
намического программирования, соотношения ко-
торого имеют вид:

Bn+1(Tn, Sn) = I {Sn ≥ ϕ} ;
Bk(Tk−1, Sk−1) =

= max
uk∈{0;1}

M [Bk+1 (Tk−1 + τkuk, Sk−1 +

+ bkXkI
{
Tk−1 + τku≤ �T

})
|Tk−1, Sk−1

]
.

В результате вычислений по приведенным фор-
мулам получится оптимальное значение целевой
функции в задаче (6):

max
u∈U
P2ϕ, �T (u) = B1(0, 0) .

4 Численные результаты

Задачи с квантильным критерием для поиска
программных и позиционных стратегий в динами-
ческой модели тестирования были успешно решены
для данных из статьи [16]. В рассматриваемом тесте
имеются 10 заданий, за которые можно получить
баллы b1 = · · · = b5 = 1, b6 = b8 = 2, b7 = b10 =
= 3 и b9 = 4. Известны вероятности правильных
ответов на каждое из заданий. Каждой задаче со-
поставляются три возможные реализации времени
решения в случае правильного решения и три ре-
ализации в случае неправильного решения, услов-
ные вероятности которых известны и приведены
в [16]. Будем считать, что на прохождения теста
выделяется �T = 2700 с (45 мин).

В табл. 1 приведены решения задач (5) и (6) в за-
висимости от параметраϕ. Указано время счета при
использовании алгоритмов из [19] для поиска про-
граммной (прогр.) и позиционной (поз.) стратегий
соответственно.

На основании полученных результатов можно
построить зависимость решения задачи (3) от уров-
ня α. Данные результаты приведены в табл. 2.
Аналогичная зависимость для задачи (4) приведена
в табл. 3.
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Таблица 1 Зависимость решений задач (5) и (6) от параметра ϕ

ϕ
Оптимальная программная

стратегия u∗ P1
ϕ, �T (u

∗) max
u∈U
P2

ϕ, �T (u) Время счета (прогр. / поз.), с

4 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0,9997 0,9997 0,16 / 0,11
5 (1, 1, 1, 1, 1, 1, 1, 1, 0, 1) 0,9973 0,9980 0,16 / 0,11
6 (1, 1, 1, 1, 1, 1, 1, 1, 0, 1) 0,9893 0,9924 0,16 / 0,11
7 (1, 1, 1, 0, 1, 1, 1, 1, 0, 1) 0,9725 0,9798 0,17 / 0,08
8 (1, 1, 1, 0, 1, 1, 1, 1, 1, 1) 0,9262 0,9436 0,49 / 0,10
9 (1, 1, 1, 1, 1, 1, 1, 1, 0, 1) 0,8721 0,9072 0,15 / 0,09

10 (1, 1, 1, 0, 1, 1, 1, 1, 1, 1) 0,7735 0,8329 0,39 / 0,12
11 (1, 1, 1, 0, 1, 1, 1, 1, 1, 1) 0,6956 0,7283 0,41 / 0,09
12 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0,5504 0,6362 0,38 / 0,10
13 (1, 1, 1, 0, 1, 1, 1, 1, 1, 1) 0,4374 0,4868 0,43 / 0,12

Таблица 2 Зависимость решения задачи (3) от параметра α

α
Оптимальная программная

стратегия u∗ ϕ1α(u
∗)

(0,9973; 0,9997] (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 4
(0,9893; 0,9973] (1, 1, 1, 1, 1, 1, 1, 1, 0, 1) 5
(0,9725; 0,9893] (1, 1, 1, 1, 1, 1, 1, 1, 0, 1) 6
(0,9262; 0,9725] (1, 1, 1, 1, 1, 1, 1, 1, 0, 1) 7
(0,8721; 0,9262] (1, 1, 1, 0, 1, 1, 1, 1, 1, 1) 8
(0,7735; 0,8721] (1, 1, 1, 1, 1, 1, 1, 1, 0, 1) 9
(0,6956; 0,7735] (1, 1, 1, 0, 1, 1, 1, 1, 1, 1) 10
(0,5504; 0,6956] (1, 1, 1, 0, 1, 1, 1, 1, 1, 1) 11
(0,4374; 0,5504] (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 12

Таблица 3 Зависимость решения
задачи (4) от параметра α

α ϕ2α(u
∗)

(0,9980; 0,9997] 4
(0,9924; 0,9980] 5
(0,9798; 0,9924] 6
(0,9436; 0,9798] 7
(0,9072; 0,9436] 8
(0,8329; 0,9072] 9
(0,7283; 0,8329] 10
(0,6362; 0,7283] 11
(0,4868; 0,6362] 12

Все расчеты проводились на компьютере Acer
Aspire A315-54K (Intel Core i5-6300U 2,4 GHz, 8Gb
RAM).

5 Заключение

Рассмотрена динамическая модель прохожде-
ния ограниченного по времени теста. Исследованы
задачи с вероятностным и квантильным критери-
ями. Доказана эквивалентность рассмотренных
задач. Основываясь на доказанном свойстве и пред-
ложенном ранее алгоритме решения задачи с ве-
роятностным критерием, авторы сформулирова-

ли модифицированный алгоритм решения задачи
с критерием в форме квантили. Полученные резуль-
таты численных экспериментов демонстрируют вы-
числительную эффективность предложенного ал-
горитма. Реализация тестируемым предложенной
позиционной стратегии может представляться до-
вольно затруднительной задачей. Однако полу-
ченные в работе результаты скорее направлены на
построение в адаптивных системах тестирования
некоторой рекомендательной системы для тестиру-
емого, которая на основе текущего состояния при
прохождении теста выдает совет, какую следующую
задачу решать тестируемому с целью наилучшей
демонстрации своего уровня знаний. Кроме то-
го, спектр практических приложений рассматри-
ваемой в работе модели выходит далеко за рамки
адаптивной теории тестирования.

Модификации предложенной модели могут
быть эффективно использованы, например, в зада-
чах логистики, подобных [21]; кроме того, в задачах
анализа поведения мультиагентных систем [22], та-
ких как управление группами роботов, для которых
нужно устанавливать цели для выполнения в усло-
виях ограниченного времени функционирования
системы, и других задачах экономического харак-
тера и финансовой математики, подобных [23].
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Abstract: The problem of building optimal program and positional strategy in dynamic model of passing time-
limited test is considered. The tester sequentially solves the test tasks, gaining a certain number of points for each
task in case of the correct solution. The correctness of the test of each task is modeled by a random variable with
a Bernoulli distribution. The time spent on solving each task is also considered to be random. The positional
strategy is a function of the number of points scored after solving the next task and the total time spent on solving
previous test tasks. The function takes the value one if the tester solves the next task and zero if misses. The criterion
is the number of points scored for the test, the excess of which, while simultaneously fulfilling the limit on the test
execution time, is guaranteed with a predetermined level of confidence which acts as a task parameter. To solve the
problems under consideration, the equivalence property is used between the problem with the quantile criterion
and the problem of maximizing the corresponding probability function. After that, a modification of the algorithm
for solving a similar problem with a probabilistic quality criterion proposed earlier by the authors is used.
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КОСВЕННЫЕ ПРИЗНАКИ В ЗАДАЧАХ КЛАССИФИКАЦИИ

ДАННЫХ БОЛЬШОЙ РАЗМЕРНОСТИ

С ПОМОЩЬЮ ПРИЧИННО-СЛЕДСТВЕННЫХ СВЯЗЕЙ

А. А. Грушо1, Н. А. Грушо2, М. И. Забежайло3, В. В. Кульченков4, Е. Е. Тимонина5

Аннотация: Использование причинно-следственных связей для классификации небольших наборов
данных большой размерности может порождать конфликты, связанные с тем, что значительная часть
данных не играет существенной роли в задаче классификации и может рассматриваться как случайные
данные. В таком случае случайные данные могут порождать информативные с точки зрения причинно-
следственных связей фрагменты информации, мешающие правильной классификации или порождающие
ошибки классификации. Для нейтрализации таких ошибок необходима дополнительная информация.
Такую дополнительную информацию в данной работе удалось найти также с помощью причинно-
следственных связей. В работе определены косвенные признаки, которые можно использовать для
устранения конфликтов и уточнения правильности классификации. На примере задачи классификации
по трем информативным классам показано, как получать и как использовать косвенные признаки для
разрешения конфликтных ситуаций в процессе классификации и предотвращения ошибок.

Ключевые слова: классификация; причинно-следственные связи; косвенные признаки правильной
классификации
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1 Введение

Причинно-следственные связи стали фунда-
ментальным подходом к объяснению взаимосвязи
между событиями и результатами в различных обла-
стях исследования [1, 2]. Доверие и надежность
входят в число важнейших требований к резуль-
татам использования искусственного интеллекта
(ИИ) в практических задачах [3].

Использование в задачах классификации при-
чинно-следственных связей в условиях шума ис-
следовалось в работах [4–7]. В работе [8] начато
исследование задачи классификации данных очень
большой размерности, когда используется только
ограниченный набор обучающих образцов таких
данных. В этих условиях проверялась возмож-
ность использования причинно-следственных свя-
зей в решении классификационных задач указан-
ного типа. В тех случаях когда причин образования
данных мало и известны прецеденты по каждой
причине, использовалось обучение на прецедентах.

В работе [8] рассматривался случай двух классов,
из которых один порожден существованием одной
причины появления свойств в данных, содержащих
следствия этой причины, и добавлением случай-

ных свойств, а второй класс порожден целиком
случайной последовательностью свойств. В связи
с моделированием неинформативных свойств слу-
чайными последовательностями может возникнуть
конфликт между информативными свойствами для
классификации и ложными свойствами, возник-
шими случайно. Для разрешения конфликтных
случаев рассматривались большие параметры, при
которых конфликт не появляется с вероятностью,
стремящейся к 1.

В данной работе также рассматриваются данные
большой размерности, но соотношение больших
параметров допускает возникновение конфликт-
ных случаев. Основная проблема при классифи-
кации с помощью причинно-следственных связей
в данной постановке задачи состоит в том, что для
разрешения потенциальных конфликтов необходи-
ма дополнительная информация.

Проблема конфликтов часто возникает при раз-
личных подходах к использованию систем ИИ. На-
пример, в работе [9] описаны подходы к разреше-
нию конфликтов в задачах интеграции различных
фрагментов информации из разных источников.
В работе [10] использованы причинно-следствен-
ные связи между элементами данных для повыше-

1Федеральный исследовательский центр «Информатика и управление» Российской академии наук, grusho@yandex.ru
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4Банк ВТБ (ПАО), vlad.kulchenkov@gmail.com
5Федеральный исследовательский центр «Информатика и управление» Российской академии наук, eltimon@yandex.ru
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ния надежности классификации, построена контр-
фактуальная модель [11] для повышения доверия
к результатам классификации.

В представленной работе найдены источники
дополнительной информации для разрешения кон-
фликтов классификации на основе причинно-след-
ственных связей, приведен один из примеров ис-
пользования такой дополнительной информации.

2 Математическая модель
ситуационной
осведомленности на основе
причинно-следственных связей

Обозначим через R конечное множество
свойств, |R| = M , через D — множество данных,
которые могут поступать для классификации. Эле-
ментами множества D служат векторы x одинако-
вой длины N , состоящие из свойств множества R.

Ситуацию определим как множество свойств,
используемых для принятия решения лицом, при-
нимающим решение, для прогноза развития или
определения дальнейших действий. В качестве си-
туации можно рассматривать описание медицин-
ского диагноза, схему мошенничества, прогнозы
развития анализируемой системы [8]. Предпо-
лагаем, что выполняется условие контрфактуаль-
ности [11], т. е. определено конечное фиксирован-
ное множество различных возможных ситуаций.
Для простоты будем рассматривать три выявленные
ситуации, при этом данные о ситуациях получены
из исторических данныхD1, D2 и D3.

Причинно-следственные отношения определя-
ются следующим образом. Если множество A
свойств (возможно, не принадлежащих R) порож-
дает множество свойств B из R (при наличии воз-
можности взаимодействия свойств A и B), то A
называется причиной, а B называется следствием.
Если из множества A исчезает хоть одно свойство,
то следствие B не может появиться. Если к мно-
жеству свойств A добавлено хоть одно новое свой-
ство, то при наличии возможности связи A и B
множество свойств B все равно появится, однако
расширенное множество, содержащее A, будем на-
зывать покрытием причиныA и обозначать черезC.
Таким образом, в покрытие может входить множе-
ство причин, каждая из которых порождает свое
множество следствий.

Для простоты рассмотрим три возможные си-
туации (классы 1, 2 и 3) покрытия причин C1, C2
иC3. Классификация каждой ситуации может быть
описана сокращенным набором следствий каждого

из этих покрытий, а именно: если c∗1 — минималь-
ный вектор свойств длины n, в который входят
следствия покрытия C1, а c∗2 и c∗3 — минималь-
ные векторы следствий длины n, в которые входят
следствия соответственно C2 и C3, то каждый из
этих векторов определяет минимальное множество
свойств, достаточных для принятия решения ли-
цами, принимающими решения, или для прогноза
развития или определения дальнейших действий.
Дополнительно потребуем, чтобы свойства в c∗1, c

∗
2

и c∗3 не имели совпадений. Эти векторы были по-
лучены из обучающих данных в множествах D1, D2
иD3 как совпадающие части всех обучающих выбо-
рок в каждом из этих множеств и не встречающиеся
в других Di. Кроме свойств из c∗1, c

∗
2 и c∗3 существу-

ют в покрытиях другие причины, не порождающие
в своих классах векторы следствий c∗1, c

∗
2, c

∗
3. Более

того, сами причины, порождающие c∗1, c∗2, c
∗
3, мо-

гут иметь другие следствия, которые присутствуют
в данных или появляются в данных других классов.

При анализе могут появиться данные, которые
не обладают ни одним из наборов свойств c∗1, c

∗
2 и c∗3.

Это может произойти из-за сильных искажений или
появления данных, не соответствующих классам 1,
2 и 3. В этом случае будем считать, что имеется 4-й
класс, целиком состоящий из случайных данных.

Пусть x ∈ D и не является информацией из
исторических данных. Рассмотрим варианты клас-
сификации данных x по одному из 4-х классов.
Обозначим функцию классификатора через Kp(x),
принимающую значения 1, 2, 3, 4 и противоречие.

Вариант 1. Данные x содержат в точности свой-
ства из одного из векторов c∗1, c∗2, c

∗
3 и не содержат

свойств из других векторов c∗1, c
∗
2, c

∗
3.

Однозначная, казалось бы, классификация
в этом варианте может оказаться ошибочной.

Вариант 2. Данные x содержат по крайней ме-
ре свойства из двух векторов из c∗1, c

∗
2, c

∗
3. В этом

случае Kp фиксирует противоречие.
Вариант 3. Данныеx не содержат ни одного пол-

ного набора свойств из какого-либо векторов из c∗1,
c∗2, c

∗
3. В этом случае Kp фиксирует класс, состоя-

щий из целиком случайных данных. Но на самом
деле случайные данные могут порождать ошибку
классификации.

Замечание. Всюду предполагается, что фраза «со-
держит вектор» не подразумевает подряд идущие
свойства векторов из наборов свойств c∗1, c

∗
2 и c∗3.

Свойства могут появляться в любом порядке впе-
ремешку со случайно появившимися свойствами.
Присутствие всех элементов какого-либо из векто-
ров c∗1, c

∗
2, c

∗
3 или нескольких из них определяет-

ся с помощью алгоритмов, разработанных в рабо-
те [12].
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3 Пример условий разрешимости
противоречий

Рассмотрим противоречие варианта 2 в случае
появления в данных x свойств целиком из c∗1, c∗2
и c∗3, т. е. идентификаторов 1-го и 3-го классов.
Предположим, что какая-то причина из C1 порож-
дает свойство α ∈ R, также порождаемое какой-то
причиной в C2, но не порождаемой какой-либо
причиной из C3. Тогда непоявление в x свой-
ства α однозначно определяет класс Kp(x) = 3. Но
при наличии α с ненулевой вероятностью проти-
воречие сохраняется: Kp(x) = 3 или 1. Если при
истинном классе 3 свойство α возникло случайно
или детерминированно при истинном классе 1, то
противоречие сохраняется.

Определение. Свойство α, порождаемое ровно дву-
мя из трех покрытиями причин в классах, называет-
ся косвенным признаком разрешения противоречия
в классификации данных.

Наличие в рассматриваемом случае в данных
x одного косвенного признака, порожденного α,
означает, что при равновероятном появлении слу-
чайных свойств в данных вероятность разрешения
противоречия в рассматриваемом примере (вероят-
ность случайного непоявления α при истинном 3-м
классе) равна (1 − 1/M)N−2n.

При больших M и N и соотношении, напри-
мер, N/M = 1/2 эта вероятность приблизительно
равна 1/2. В то же время вероятность случайного
появления всех элементов идентификатора ложно-
го класса (т. е. случайного набора свойств одного из
векторов c∗1, c

∗
2, c

∗
3) приблизительно равна (1/2)n,

что позволяет разрешить конфликт с вероятностью
приблизительно (1/2)n+1.

Если C1 порождает два косвенных признака α1
иα2 со свойствамиα и в данных отсутствует хотя бы
один из них, то класс 3 определяется однозначно.

Рассмотрим случай, когда C3 порождает свой-
ство β, которое порождается также C2, но не по-
рождается свойством C1. Тогда если в данных x
присутствуют c∗1 и c∗3 и α, но не присутствует β, то
однозначно определяется класс 1.

Отметим, что косвенные признаки работают не-
зависимо друг от друга и они могут появляться в лю-
бом количестве.

При классификации случайной последователь-
ности также могут работать косвенные признаки.
Предположим, что в целиком случайной последо-
вательности x случайно образовались все свойства
из c∗1, но в данных x нет α или других косвенных
признаков 1-го класса. Тогда отсутствие косвен-
ных признаков появления C1 служит подтвержде-
нием принадлежности x классу целиком случайных

последовательностей. Эти рассуждения относятся
к другим случаям появления в случайных данных
c∗1, c

∗
2, c

∗
3.

4 Выявление косвенных
признаков

Рассмотрим задачу нахождения косвенных при-
знаков, использование которых было рассмотрено
в предыдущем разделе.

Отметим, что свойство, которое порождает кос-
венный признак класса i (i = 1, 2, 3), всегда появля-
ется в данных, когда порождение происходит за счет
причины, находящейся в покрытии Ci. В примере,
построенном выше, косвенный признак порожда-
ется причинами ровно двух покрытий. Если этот
признак порождается всеми покрытиями, то он не
может использоваться в классификации. Если этот
признак порожден ровно одним покрытием, то он
может быть включен в соответствующий вектор c∗.
Весь смысл построения c∗1, c

∗
2, c

∗
3 состоит в том, что

эти свойства принадлежат одному и только одному
классу. Поэтому свойство α не может быть включе-
но в соответствующий идентификационный набор
свойств c∗1. В то же время в данных может случайно
появиться любое свойство.

Для построения алгоритма поиска косвенных
признаков будем использовать множества D1, D2
и D3. Векторы c∗1, c

∗
2 и c∗3 строились следующим

образом. В силу причинно-следственных связей
в каждом экземпляре данных x из D1 должны на-
ходиться все свойства из c∗1. Кроме них должны
находиться все свойства остальных причин в C1.
Свойства из c∗1 не могут встречаться в свойствах,
порожденных покрытиями C2 и C3. Для провер-
ки этого условия необходимо проверить, что среди
свойств, порожденных C2 и C3, нет свойств из c∗1.
Этот перебор можно совместить с построением c∗2
и c∗3 и поиском свойств, порождающих косвенные
признаки.

Сначала выявим все свойства, порожденные
причинами покрытияC1. Эти свойства обязательно
присутствуют во всех данных множестваD1 (доста-
точно работать с обучающей выборкой S1). Та-
кие наборы свойств определяются со сложностью
|S1|N lnN [12]. Обозначим такой набор H1. Так
же, используя множестваD2 иD3, строятся наборы
свойствH2 иH3, порождаемыеC2 иC3. Небольшой
модификацией алгоритма работы [12] выделяются
свойства, встречающиеся во всех трех наборах (эти
свойства не используются для порождения косвен-
ных признаков). Исключаем эти свойства из набо-
ров следствийC1,C2 иC3. Далее рассматриваем па-
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ры сокращенных наборов и ищем в них повторения.
Все найденные повторения порождают различные
косвенные признаки. Оставшиеся неповторивши-
еся свойства могут использоваться для построения
векторов c∗1, c

∗
2 и c∗3.

5 Обсуждение

Несколько замечаний относительно перспек-
тивности исследования и использования косвен-
ных признаков. В рассмотренных примерах спо-
собов получения дополнительной информации для
принятия решений существуют другие источники,
например совпадения событий во времени, контр-
примеры и др. С другой стороны, в данной рабо-
те сделаны сильные предположения о следствиях,
хорошо идентифицирующих причины. Ослабле-
ние этих предположений (например, использова-
ние только частичной информации о следствиях
причин) может только усилить значимость косвен-
ных признаков для принятия правильных решений.
Доказано [13], что при использовании машинного
обучения нельзя говорить о гарантиях доверия к ре-
зультатам проведенного ИИ анализа. Поэтому ис-
пользование дополнительной информации в форме
косвенных данных может только повышать дове-
рие к результатам анализа, что соответствует ло-
гике использования других источников информа-
ции. В некоторых задачах нет других источников
информации кроме косвенных признаков. Напри-
мер, анализ сбоев приложений в распределенных
системах ведется с помощью центров сбора жалоб
пользователей (имеются в виду down-detectors [14]).

Вместе с тем развитие теории косвенных при-
знаков тесно переплетается с проблемами в других
задачах систем ИИ. В частности, существует проб-
лема синхронизации источников дополнительной
информации и нормализации данных из различ-
ных информационных пространств. Точно такие
же проблемы возникают в задачах объяснимости
результатов, полученных после обработки данных
системами ИИ [15].

6 Заключение

Использование причинно-следственных связей
для классификации небольших наборов данных
большой размерности может порождать конфлик-
ты, связанные с тем, что значительная часть данных
не играет существенной роли в задаче класси-
фикации и может рассматриваться как случай-
ные данные. В таком случае случайные данные
могут порождать информативные с точки зрения

причинно-следственных связей фрагменты инфор-
мации, мешающие правильной классификации
или порождающие ошибки классификации. Для
нейтрализации таких ошибок необходима допол-
нительная информация. Такую дополнительную
информацию в данной работе удалось найти также
с помощью причинно-следственных связей. В ра-
боте определены косвенные признаки, которые
можно использовать для устранения конфликтов
и уточнения правильности классификации.

На примере задачи классификации по трем ин-
формативным классам показано, как получать и как
использовать косвенные признаки для разрешения
конфликтных ситуаций в процессе классификации
и предотвращения ошибок.

Работа использует результаты применения при-
чинно-следственных связей для задачи классифи-
кации в других условиях, чем в статье [8], и резуль-
таты работы по построению быстрых алгоритмов
поиска необходимой информации в обучающих
данных [12].
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information is needed to neutralize characteristics errors. In the present paper, such additional information was also
found using causal relationships. The authors define indirect characteristics that can be used to resolve conflicts
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