Èíñòèòóò ïðîáëåì èíôîðìàòèêè Ðîññèéñêîé Àêàäåìèè íàóê
Èíñòèòóò ïðîáëåì èíôîðìàòèêè Ðîññèéñêîé Àêàäåìèè íàóê
Ðîññèéñêàÿ Àêàäåìèÿ íàóê

Èíñòèòóò ïðîáëåì èíôîðìàòèêè Ðîññèéñêîé Àêàäåìèè íàóê



«INFORMATICS AND APPLICATIONS»
Scientific journal
Volume 7, Issue 4, 2013

Content | Abstract | About  Authors

References

STUDY OF THE DYNAMICS OF MULTIDIMENSIONAL STOCHASTIC SYSTEMS BASED ON ENTROPY MODELING.

  • A. N. Tyrsin   Science and Engineering Center «Reliability and Resource of Large Systems and Machines», Ural Branch, Russian Academy of Sciences, Yekaterinburg 620049, Russian Federation, at2001@yandex.ru
  • O. V. Vorfolomeeva  Chelyabinsk State University, Chelyabinsk 454001, Russian Federation, ya.olga.work@yandex.ru

References

  1. Klimontovich, Ju. L. 2002. Vvedenie v fiziku otkrytykh system [Introduction to the physics of open systems]. Moscow: Janus-K Publ. 284 p.
  2. Wilson A.G. 1970. Entropy in urban and regionalmodeling. L.: Pion. 166 p.
  3. Trubeckov, D. I., E. S. Mchedlova, and L. V. Krasichkov. 2002. Vvedenie v teoriyu samoorganizatsii otkrytykh system [Introduction to the theory of self-organization of open systems]. Moscow: Publishing House of Physical-Mathematical Literature. 200 p.
  4. Romanovskij, Ju.M., N. V. Stepanova, and D. S. Chernavskij. 2003. Matematicheskoe modelirovanie v biofizike [Mathematical modeling in biophysics]. Moscow-Izhevsk: Computer Research Institute. 402 p.
  5. Prangishvili, I. V. 2003. Entropiynye i drugie sistemnye zakonomernosti: Voprosy upravleniya slozhnymi sistemami [Entropic and other system regularities: Questions of management of complex systems]. Moscow: Nauka. 428 p.
  6. Skorobogatov, S.M. 2009. Katastrofy i zhivuchest' zhelezobetonnykh sooruzheniy (klassifikaciya i elementy teorii)[Catastrophes and serviceability of reinforced concrete buildings (classification and elements of theory)]. Ekaterinburg: Ural State University of Railway Transport. 512 p.
  7. Shannon C. 1948. Amathematical theory of communication. Bell Syst. Tech. J. 27(3):379-423; 4:623-56.
  8. Cover, T.M., and J.A. Thomas. 1991. Elements of information theory. N.Y.: Wiley. 563 p.
  9. Pena, D.,A. Van derLinde. 2007. Dimension less measures of variability and dependence for multivariate continuous distributions. Commun. Stat. Theor. M. 36(10):1845-54.
  10. Novickij, P. V. 1968. Osnovy informatsionnoj teorii izmeritel'nykh ustroystv [Fundamentals of information theorymeasuring devices]. Leningrad: Energy Publs. 248 p.
  11. Stratonovich, R. L. 1975. Teoriya informatsii [Information theory]. Moscow: Soviet Radio Publs. 424 p.
  12. Greene, W.H. 2011. Econometric analysis. 7th ed. Prentice Hall. 1230 p.
  13. Tyrsin, A.N., and I. S. Sokolova. 2012. Entropiyno - veroyatnostnoe modelirovanie gaussovskih stohasticheskikh sistem [Entropy-propabilistic modeling of Gaussian stochastic systems]. Matematicheskoe modelirovanie [Mathematical modeling] 24(1):88-102.
  14. Nikolis, G., and I. Prigogine. 1977. Self-oraganization in nonequilibrium systems: From dissipative structures to order through fluctuations. N.Y.: John Wiley&Sons. 512 p.
  15. Beirlant, J., E. J. Dudewicz, L. Gyorfi, and E.C. van derMeulen. 1997. Nonparametric entropy estimation: an overview. Int. J. Math. Stat. Sci. 6(1):17-39.
  16. Stowell, D., and M.D. Plumbley. 2009. Fast multidimensional entropy estimation by k-d partitioning. IEEE Signal Proc. Lett. 16(6):537-40.
  17. Tyrsin, A.N., and I.A. Kljavin. 2010. Povyshenie tochnosti otsenki entropii sluchaynyh eksperimental'nykh dannykh [Increase in the accuracy of the estimate of the entropy of a random experimental data]. Sistemy Upravleniya i Informatsionnye Tekhnologii [Control Systems and Information Technologies] 1(39):87-90.
  18. Noughabi, H.A., and N.R. Arghami. 2010. A new estimator of entropy. J. Iran. Stat. Soc. 9(1):53-64.

A LIMIT THEOREM FOR GEOMETRIC SUMS OF INDEPENDENT NONIDENTICALLY DISTRIBUTED RANDOM VARIABLES AND ITS APPLICATION TO THE PREDICTION OF THE PROBABILITIES OF CATASTROPHES IN NONHOMOGENEOUS FLOWS OF EXTREMAL EVENTS.

  • M. E. Grigor’eva  Parexel International, Moscow 121609, Russian Federation, maria2grigoryeva@yandex.ru
  • V. Yu. Korolev  Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation, victoryukorolev@yandex.ru
  • I. A. Sokolov   Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, Russian Federation, isokolov@ipiran.ru

References

  1. Korolev, V. Yu., and I.A. Sokolov. 2005. Nekotorye voprosy analiza katastroficheskikh riskov, svyazannyh s neodnorodnymi potokami ekstremal’nykh sobytiy [Some problems of the analysis of catastrophic risks related to nonhomogeneous flows of extremal events]. Sistemy i sredstva informatiki. Special’nyj vypusk “Matematicheskie metody v informacionnyh tehnologijah” [Systems andMeans of Informatics. Special Issue “Mathematical Methods and Models of Informatics”]. Moscow: IPI RAN. 109–125.
  2. Korolev, V. Yu., I.A. Sokolov, A. S. Gordeev, M.E. Grigor’eva, S. V. Popov, and N.A. Chebonenko. 2006. Nekotorye metody analiza vremennykh kharakteristik katastrof v neodnorodnykh potokakh ekstremal’nykh sobytiy [Some methods for the analysis of temporal characteristics of catastrophes in nonhomogeneous flows of extremal events]. Sistemy i sredstva informatiki. Special’nyy vypusk “Matematicheskie metody v informatsionnykh tehnologijakh” [Systems and Means of Informatics. Special Issue “Mathematical methods in information technologies”]. Moscow: IPI RAN. 5–23.
  3. Korolev, V. Yu., I.A. Sokolov, A. S. Gordeev, M. E. Grigor’eva, S. V. Popov, and N.A. Chebonenko. 2007. Nekotorye metody prognozirovaniya vremennykh kharakteristik riskov, svyazannykh s katastroficheskimi sobytiyami [Some methods for the prediction of the temporal characteristics of risks related to catastrophic events]. Aktuariy [Actuary] 1:34–40.
  4. Korolev, V. Yu., and I.A. Sokolov. 2008. Matematicheskie modeli neodnorodnykh potokov ekstremal’nykh sobytiy [Mathematical models of nonhomogeneous flows of extremal events]. Moscow: TORUS PRESS. 200 p.
  5. Korolev, V. Yu., and S. Ya. Shorgin. 2011. Matematicheskie metody analiza stokhasticheskoy struktury informatsionnykh potokov [Mathematical methods for the analysis of the stochastic structure of information flows]. Moscow: IPI RAN. 130 p.
  6. Korolev, V. Yu., A. V. Chertok, A. Yu. Korchagin, and A.K. Gorshenin. 2013. Veroyatnostno-statisticheskoe modelirovanie informatsionnykh potokov v slozhnykh finansovykh sistemakh na osnove vysokochastotnykh dannykh [Probability and statistical modeling of information flows in complex financial systems based on highfrequency data]. Inform. Appl. 7(1):12–21.
  7. Kalashnikov, V. 1997. Geometric sums: Bounds for rare events with applications. Dordrecht–Boston–London: Kluwer Academic Publs. 288 p.
  8. Korolev, V. Yu., V. E. Bening, and S. Ya. Shorgin. 2011. Matematicheskie osnovy teorii riska [Mathematical foundations of risk theory]. 2nd ed. Moscow: Fizmatlit. 620 p.
  9. Korolev, V. Yu. 1994. Convergence of random sequences with the independent random indices. I. Theory Probab. Appl. 39(2):282–97.
  10. Balkema, A., and L. de Haan. 1974. Residual life time at great age. Ann. Probab. 2:792–804.
  11. Pickands, J. 1075. Statistical inference using extreme order statistics. Ann. Stat. 3:119–31.
  12. Atkinson, A. 1999. Impact Earth: Asteroids, comets and meteors — the growing threat. Virgin Publ.

THE DISTRIBUTION OF THE RETURN TIME FROM THE SET OF OVERLOAD STATES TO THE SET OF NORMAL LOAD STATES IN A SYSTEM   M|M|1|<L,H>|<H,R>    WITH HYSTERETIC LOAD CONTROL .

  • Yu. V. Gaidamaka   Peoples’ Friendship University of Russia, Moscow 117198, Russian Federation, ygaidamaka@sci.pfu.edu.ru
  • A. V. Pechinkin  Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, Russian Federation, apechinkin@ipiran.ru
  • R. V. Razumchik   Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, Russian Federation, rrazumchik@ieee.org
  • A. K. Samuylov  Peoples’ Friendship University of Russia, Moscow 117198, Russian Federation, asam1988@gmail.com
  • K. E. Samouylov  Peoples’ Friendship University of Russia, Moscow 117198, Russian Federation, ksam@sci.pfu.edu.ru
  • I. A. Sokolov  Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, Russian Federation, isokolov@ipiran.ru
  • E. S. Sopin  Peoples’ Friendship University of Russia, Moscow 117198, Russian Federation, sopin2eduard@yandex.ru
  • S. Ya. Shorgin  Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, Russian Federation, sshorgin@ipiran.ru

References

  1. Hilt, V., E. Noel, C. Shen, and A. Abdelal. Design considerations for Session Initiation Protocol (SIP) overload control. 2011. Internet Engineering Task Force RFC- 6357. Available at: http://tools.ietf.org/html/rfc6357 (accessed October 1, 2013).
  2. Hilt, V., J. Rosenberg, H. Schulzrinne, et al. SIP: Session Initiation Protocol. 2002. Internet Engineering Task Force RFC-3261. Available at: http:// tools.ietf.org/html/rfc3261 (accessed October 1, 2013).
  3. Rosenberg, J. Requirements for management of overload in the Session Initiation Protocol. 2008. Internet Engineering Task Force RFC-5390. Available at: http:// tools.ietf.org/html/rfc5390 (accessed October 1, 2013).
  4. Gurbani, V., V. Hilt, and H. Schulzrinne. Session Initiation Protocol overload control. 2013. Internet Engineering Task Force Draft. Available at: http://tools.ietf.org/pdf/draft-ietf-soc-overload- control-13.pdf (accessed October 1, 2013).
  5. Noel, E., and P.M. Williams. Session Initiation Protocol rate control. 2013. Internet Engineering Task Force Draft. Available at: http://tools.ietf.org/pdf/draft-ietf- soc-overload-rate-control-05.pdf (accessed October 1, 2013).
  6. ITU-T Recommendation Q.704: Signalling system No. 7 — Message Transfer Part, Signalling network functions and messages. 1996. Available at: http:// www.itu.int/rec/T-REC-Q.704-199607-I/en (accessed October 1, 2013).
  7. Abaev, P., Yu. Gaidamaka, and K. Samouylov. 2011. Gisterezisnoe upravlenie signal’noy najruzkoy v seti SIPserverov [Hysteretic overboad control in a SIP signaling network]. Vestnik RUDN. SeriyaMatematika, Informatika, Fizika [Bulletin of Peoples’ Friendship University of Russia. Ser. Mathematics. Informatics. Physics] 4:55–73.
  8. Abaev, P., Yu. Gaidamaka, A. Pechinkin, R. Razumchik, and S. Shorgin. 2012. Simulation of overload control in SIP server networks. 26th Conference (European) on Modelling and Simulation ECMS Proceedings. Koblenz. 533–39.
  9. Abaev, P., Yu. Gaidamaka, and K. Samouylov. 2012. Queuing model for loss-based overload control in a SIP server using a hysteretic technique. Internet of things, smart spaces, and next generation networking. Eds. S. Andreev, S. Balandin, and Ye. Koucheryavy. Lecture notes in computer science ser. Heidelberg: Springer-Verlag. 7469:371– 78.
  10. Gebhart, R. F. 1967. A queuing process with bilevel hysteretic service-rate control. Nav. Res. Logist. Q. 14:55–68.
  11. Krasnoselskii, M., and A. Pokrovskii. 1989. Systems with hysteresis. Berlin–Heidelberg–New York–London– Paris–Tokio: Springer-Verlag. 410 p.
  12. Yum, T., and H. Yen. 1983. Design algorithm for a hysteresis buffer congestion control strategy. IEEE Conference (International) on Communications Proceedings. 499–503.
  13. Brown, P., P. Chemouil, and B. Delosme. 1984. A congestion control policy for signalling networks. 7th IeCC Proceedings. 717–24.
  14. Golubchik, L., and J. Lui. 1997. Bounding of performance measures for a threshold-based queueing system with hysteresis. Newsl. ACM SIGMETRICS Performance Evaluation Rev. 25(1):147–57.
  15. Sindal, R., and S. Tokekar. 2008. Modeling and analysis of voice/data call admission control scheme in CDMA cellular network for variation in soft handoff threshold parameters. 16th IEEE Conference (International) on Networks (ICON 2008) Proceedings. 1–6.
  16. Zhernovyi, K., and Yu. Zhernovyi. 2012. Sistema   s gisterezisnym pereklyucheniem intensivnosti obsluzhivaniya [The system   with a hysteretic switching intensity of service]. Information Processes 12(3):176–90.
  17. Takagi, H. 1985. Analysis of a finite-capacity M/G/1 queue with a resume level. Perform. Evaluation 5:197– 203.
  18. Benaboud, H., and N. Mikou. 2002. Analysis by queuing model of multi-threshold mechanism in ATM switches. 5th IEEE Conference (International) on High Speed Networks and Multimedia Communications (HSNMC 2002) Proceedings. 147–51.
  19. Dshalalow, J.H. 1997. Queueing systems with state dependent parameters. Frontiers in queueing: Models and applications in science and engineering. Ed. J.H. Dshalalow. Probability and stochastic ser. CRC Press. 61–116.
  20. Bekker, R. 2009. Queues with Levy input and hysteretic control. Queueing Syst. 63(1):281–99.
  21. Roughan, M., and C. Pearce. 2000. A martingale analysis of hysteretic overload control. Adv. Perform. Anal. J. Teletraffic Theory Performance Anal. Communication Syst. Networks. 3(1):1–30.
  22. Abaev, P., Yu.Gaidamaka, andK. Samouylov. 2012.Modeling of hysteretic signalling load control in next generation networks. Internet of things, smart spaces, and next generation networking. Eds. S. Andreev, S. Balandin, and Ye. Koucheryavy. — Lecture notes in computer science ser. Heidelberg: Springer-Verlag. 7469:440–52.
  23. Abaev, P., and R. Razumchik. 2012. Modelirovanie raboty SIP servera s pomoshchyu sistemy massovogo obsluzhivaniya s gisterezisom i progulkami v diskretnom vremeni [Modeling of SIP-server with hysteric overload control as discrete time queueing system]. T-Comm — Telekommunikacii i transport [T-Comm—Telecommunications and Transport] 7:5–8.
  24. Gaidamaka, Yu., K. Samouylov, and E.Sopin. 2012. Model’  odnoy sistemy massovogo obsluzhivaniya tipa M/G/1 s gisterezisnym upravleniem vkhodyashchim potokom [On queueing system of M|G|1 type with hysteretic input flow control]. T-Comm — Telekommunikacii i transport [T-Comm— Telecommunications and Transport] 7:60–62.
  25. Abaev, P., A. Pechinkin, and R. Razumchik. 2012. On analytical model for optimal SIP server hop-by-hop overload control. 4th Congress (International) on Ultra Modern Telecommunications and Control Systems Proceedings. IEEE. 299–304. doi:10.1109/ICUMT.2012.6459680.
  26. Abaev, P., A. Pechinkin, and R. Razumchik. 2013. Analysis of queueing system with constant service time for SIP server hop-by-hop overload control. Modern Probab. Meth. Anal. Telecommunication Networks Communications Computer Information Sci. 356: 1–10. doi:10.1007/978-3- 642-35980-4 1.
  27. Abaev, P., A. Pechinkin, and R. Razumchik. 2013. On mean return time in queueing system with constant service time and bi-level hysteric policy. Modern Probab. Meth. Anal. Telecommunication Networks Communications Computer Information Sci. 356:11–19. doi:10.1007/978-3- 642-35980-4 2.
  28. Abaev, P., Yu. Gaidamaka,K. Samouylov, and S. Shorgin. 2013. Design and software architecture of SIP server for overload control simulation. 27th Conference (European) on Modelling and Simulation Proceedings. Aalesund, Norway. 533–39. doi:10.7148/2013-0580.
  29. Pechinkin, A., and R. Razumchik. 2013. Approach for analysis of finite M2/M2/1/R with hysteric policy for SIP server hop-by-hop overload control. 27th Conference (European) on Modelling and Simulation Proceedings. Aalesund, Norway. 573–79. doi:10.7148/2013.
  30. Shorgin, S., K. Samouylov, Yu. Gaidamaka, and Sh. Etezov. 2013. Polling systemwith threshold control formodeling of SIP server under overload. 18th Conference (International) on Systems Science Proceedings.Wroclaw: Springer International Publs. 240:97–107.doi:10.1007/978-3-319- 01857-7 10.
  31. Gaidamaka, Yu. 2013. Model’ s porogovym upravleniem nagruzkoy dlya analiza serverov protokola SIP v rezhime peregruzok [On model with threshold load control for SIP server overload analysis]. Avtomatika i vychislitel’naya tekhnika [Automatic Control and Computer Sciences] 4:65– 75.
  32. Abaev, P., Yu. Gaidamaka, K. Samouylov, A. Pechinkin, R. Razumchik, and S. Shorgin. 2014 (in press). Hysteretic control technique for overload problem solution in network of SIP servers. Comput. Inform. 33(1).
  33. MathWorks — MATLAB and Simulink for Technical Computing. Available at: http://www.mathworks.com (accessed October 1, 2013).
  34. Wolfram Mathematica: Programmnoe obespechenie dlya tekhnicheskikh vychisleniy [Software for numerical computations]. Available at: http://www. wolfram.com/mathematica (accessed October 1, 2013).
  35. Maple — Technical Computing Software for Engineers, Mathematicians, Scientists, Instructors and Students. Available at: http://www.maplesoft.com/ products/maple (accessed October 1, 2013).
  36. Bocharov, P.P., C.D’Apice, A. V. Pechinkin, and S. Salerno. 2004. Queueing theory. Utrecht, Boston: VSP. 446 p.
  37. Kempa, W. 2012. On time to buffer saturation in a GI/M/1/N-type queue. Int. J. Adv. Telecommunications Electrotechnics Signals Syst. 1(2-3):60–66.

ABOUT ONE TASK OF OVERLOAD CONTROL.

  • M. G. Konovalov   Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, Russian Federation, mkonovalov@ipiran.ru

References

  1. Konovalov, M.G. 2010. Oplanirovanii potokov v sistemakh vychislitel’nykh resursov [On task flow planning in computional resource systems]. Inform. Appl. 4(2):3–12.
  2. Konovalov, M. 2010. Multiagent model for jobs flows planning and pricing in distributed computing systems. 2010 Congress (International) on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). ICUMTT, ICUMT-CS and Associated Workshops Proceedings. CDROM. IEEE, Catalog Number CFP1063G-CDR. ISBN 978-1-4244-7286-4. Report 1569339397.
  3. Konovalov, M.G., Yu. E.Malashenko, and I. A. Nazarova.  2011. Job control in heterogeneous computing systems. J. Comput. Syst. Sc. Int. 50(2):220–37.
  4. Konovalov, M.G. 2012. Optimizatsiya raboty vychislitel’nogo kompleksa s pomoshch’yu imitatsionnoy modeli i adaptivnykh algoritmov [Computer system optimization using simulation model and adaptive algorithms]. Inform. Appl. 6(1):37–48.
  5. Welzl, M. 2005. Network congestion control. NY: Wiley.
  6. Hong, Y., C. Huang, and J. Yan. 2012. A comparative study of SIP overload control algorithms. Network and traffic engineering in emerging distributed computing applications. Eds. J. Abawajy, M. Pathan, M. Rahman, A.K. Pathan, and M.M. Deris. IGI Global. 1–20. Available at: http://arxiv.org/ftp/arxiv/papers/1210/1210.1505.pdf (accessed November 5, 2013).
  7. Borovkov, A.A. 2009. Teoriya veroyatnostey [Probability theory]. 5th ed.M.: Librokom. 656 p.
  8. Abaev, P.O., Y. V. Gaidamaka, A. V. Pechinkin, R. V. Razumchik, and S. Ya. Shorgin. 2012. Simulation of overload control in SIP server networks. ECMS 2012: 26th European Conference onModelling and Simulation Proceedings. Koblenz, Germany. 533–39.

FUNCTIONS OPTIMIZATION OF LAB - CONTRAST GRADED TRANSFORMATION.

  • O. P. Arkhipov   Oryol Branch, Institute of Informatics Problems, Russian Academy of Sciences, Oryol 302025, Russian Federation, arkhipov12@yandex.ru
  • Z. P. Zykova  Oryol Branch, Institute of Informatics Problems, Russian Academy of Sciences, Oryol 302025, Russian Federation, zykzoya@yandex.ru

References

  1. Arkhipov, O. P., and Z. P. Zykova. 2008. Dopechatnoe testirovanie individual’nogo zritel’nogo vospriyatiya [Preprinting test of individual visual perception]. Herald of Computer and Information Technologies 12:2–8.
  2. Arkhipov, O.P., and Z. P.Zykova. 2010. Integraciya geterogennoy informatsii o tsvetnykh pikselyakh i ikh tsvetovospriyatii [Integration of heterogeneous information about color pixels and their color perception]. Inform. Appl. 4(4):14–25.
  3. Arkhipov, O. P., and Z.P. Zykova. 2010. Funktsional’noe opisanie individual’nogo tsvetovospriyatiya [Characteristics of color perceptual space]. Informatsionnye sistemy i tekhnologii [Information Systems andTechnologies] 5:5–12.
  4. Arkhipov, O. P., and Z.P. Zykova. 2010. RGB kharakterizatsija prostranstva tsvetovospriyatiya [RGBcharacterization of color perception space]. Systems and Means of Informatics 20(1):73–90.
  5. Arkhipov, O. P., and Z.P. Zykova. 2011. Mnogokriterial’nyy vybor testovogo mnozhestva pri issledovanii tsvetovospriyatiya [Multicriterion choice of test set when studying the color perception]. Informatsionnye tekhnologii [Information Technologies] 2:67–73.
  6. Arkhipov, O. P., and Z.P. Zykova. 2011. Ravnokontrastnye gradatsionnye preobrazovaniya stupenchatykh tonovykh shkal [Equal contrast graded transformation of step tinted scales]. Informatsionnye sistemy i tekhnologii [Information Systems and Technologies] 4:39–46.
  7. Arkhipov, O. P., and Z.P. Zykova. 2012. Personifitsirovannoe preobrazovanie predstavleniy tsvetnykh izobrazheniy na monitore PEVM [Personified transformation of color images presentations on a PC monitor]. Systems and Means of Informatics 22(1):22–37.
  8. Arkhipov, O. P., and Z. P. Zykova. 2013. Metod uluchsheniya detalizatsii tsvetnykh izobrazheniy [Method of improving the detail of color images]. Herald of Computer and Information Technologies 2:6–11.
  9. Arkhipov, O. P., and Z.P. Zykova. 2013. Korrektsiya detalizatsii predstavleniy RGB-izobrazheniy na periferiynykh ustroystvakh PEVM [Correcting of detail presentations of RGB-images on peripherals of PC]. Informatsionnye Tekhnologii [Information Technologies] 2:56–60.
  10. ETH Zurich. 2008. Color Oracle/Institute of Cartography. Available at: http://www.colororacle.org (accessed November 5, 2013).
  11. Vischeck. 2008. Available at: http://www.vischeck.com (accessed November 3, 2013).

METHOD OF BIBLIOGRAPHIC INFORMATION EXTRACTION FROM FULL-TEXT DESCRIPTIONS OF INVENTIONS.

  • I. M. Zatsman   Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, Russian Federation, iz_ipi@a170.ipi.ac.ru
  • V. A. Havanskov  Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, Russian Federation, havanskov@a170.ipi.ac.ru
  • S.K. Shubnikov  Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, Russian Federation, sergeysh50@yandex.ru

References

  1. Kuznetsov, I., and E. Kozerenko. 2003. The system for extracting semantic information fromnatural language texts. Conference (International) onMachineLearning (MLMTA- 03) Proceedings. Las Vegas. 75–80.
  2. Kuznetsov, I. P. 2006. Semantiko-orientirovannaya sistema obrabotki neformalizovannoy informatsii s vydachey rezul’tatov na estestvennom yazyke [Semantic-oriented system for processing of nonformalized information with outcomes in a natural language]. Systems and Means of Informatics 16:235–53.
  3. Kuznetsov, I. P., and A.G. Matskevich. 2007. Semantikoorientirovannye sistemy na osnove baz znaniy [Semanticoriented systems based on knowledge bases]. M.: MTUSI. 173 p.
  4. Kuznetsov, I. P. 2008. Ob”ektno-orientirovannaya sistema, osnovannaya na znaniyakh v vide XMLpredstavleniy [The object-oriented system based on knowledge in the form of XML representations]. Systems and Means of Informatics 18:96–118.
  5. Kuznetsov, I. P., and E.B. Kozerenko. 2008. Linguistic processor Semantix for knowledge extraction fromnatural texts inRussian and English. Conference (International) on Artificial Intelligence (ICAI 2008) Proceedings. Las Vegas: CSREA Press. 835–41.
  6. Kuznetsov, I. P., and N. V. Somin. 2012. Vyyavlenie implitsitnoy informatsii iz tekstov na estestvennom yazyke: Problemy imetody [Retrieval of implicit information from natural language texts: Problems and methods]. Inform. Appl. 6(1):49–58.
  7. Narin, F., and E. Noma. 1985. Is technology becoming science? Scientometrics 7(3-6):369–81.
  8. Narin,F., andD.Olivastro. 1998.Linkage between patents and papers: An interimEPO/US comparison. Scientometrics 41(1-2):51–59.
  9. Schmoch, U. 1993. Tracing the knowledge transfer from science to technology as reflected in patent indicators. Scientometrics 26:193–211.
  10. Minin, V.A., I.M. Zatsman, M.G. Kruzhkov, and T. P. Norekjan. 2013. Metodologicheskie osnovy sozdaniya informatsionnykh sistem dlya vychisleniya indikatorov tematicheskikh vzaimosvyazey nauki i tekhnologiy [Methodological basis for the creation of information systems for the calculation of indicators of thematic linkages between science and technology]. Inform. Appl. 7(1):70– 81.
  11. Minin, V.A., I.M. Zatsman, V.A. Havanskov, and S.K. Shubnikov. 2013. Arkhitekturnye resheniya dlya sistem vychisleniya indikatorov tematicheskikh vzaimosvyazey nauki i tekhnologiy [Information system conceptual decisions for assessment of linkages between science and technologies]. Systems and Means of Informatics 23(2):260–83.
  12. Zatsman, I., and S. Shubnikov. 2007. Printsipy obrabotki informatsionnykh resursov dlya otsenki innovatsionnogo potentsiala napravleniy nauchnykh issledovaniy [Processing principles of information resources for an assessment of innovation potential of the scientific domains]. Trudy 9-j Vserossijskoj nauchnoj konferencii “Jelektronnye biblioteki” [9th All-Russian Scientific Conference on Digital Libraries Proceedings]. Pereslavl’: Publishing House of Pereslavl’ University. 35–44.
  13. Zatsman, I., O. Kurchavova, and I. Galina. 2008. Informatsionnye resursy i indikatory dlya otsenki innovatsionnogo potentsiala napravleniy nauchnykh issledovaniy [Information resources and indicators for an assessment of innovation potential of the scientific domains]. Systems and Means of Informatics 18 (add.):159–75.
  14. Kozhunova, O. 2012. Tsitirovanie dokumentov v patentakh kak indikator vzaimosvyazi oblastey nauki i tehnologiy [Citing documents in patents as an indicator for science and technologies linkages]. Systems and Means of Informatics 22(2):106–28.
  15. Van Looy, B., E. Zimmermann, R. Veugelers, A. Verbeek, J.Mello, andK.Debackere. 2003.Do science-technology interactions pay on when developing technology? An exploratory investigation of 10 science-intensive technology domains. Scientometrics 57(3):355–67.
  16. Verbeek, À.,K.Debackere,M. Luwel, P. Andries, E.Zimmermann, and D. Deleus. 2002. Linking science to technology: Using bibliographic references in patents to build linkage schemes. Scientometrics 54(3):399–420.
  17. FIPS. 2008. Administrativnyy reglament ispolneniya Rospatentompriema zayavok na izobretenie, ikh rassmotreniya i ekspertizy [Rospatent administrative regulations for filing invention applications, their considerations and examination]. http://www1.¦ps.ru/wps/wcm/ connect/content ru/ru/documents/russian laws/order minobr/administrative regulations/test 8/ (accessed December 10, 2013).
  18. Standart VOIS ST.14 “Rekomendatsii po vklyucheniyu ssylok, citiruemykh v patentnykh dokumentakh” [WIPO Standard ST.14 “Recommendation for the inclusion of references cited in patent documents”]. http://www.rupto.ru/rupto/n¦le/52b8dfc1- 1049-11e1-a520-9c8e9921fb2c/03 14 01.pdf (acessed December 10, 2013).
  19. Regulyarnye vyrazheniya v .NET Framework [.NET Framework Regular Expressions]. http://msdn. microsoft.com/ru-ru/library/hs600312.aspx (accessed December 10, 2013).
  20. Zatsman, I.M., and G. F. Verevkin. 2006. Informatsionnyy monitoring sfery nauki v zadachakh programmnocelevogo upravleniya [Information monitoring in the science sphere in problems of goal-oriented program management]. Systems and Means of Informatics 16:164–89.
  21. Zatsman, I.M. G.F. Verevkin, I. V. Drynova, O.A. Kurchavova, N. V. Larin, and T. P. Norekjan. 2006. Modelirovanie sistemin for matsionnogo monitoringa kak problema informatiki [Modeling of systems of information monitoring as informatics problem]. Systems and Means of Informatics. Nauchno-metodologicheskie problemy informatiki [Scientific and methodological problems of informatics]. Moscow: IPI RAN. 112–39.
  22. Zatsman, I., and O. Kozhunova. 2007. Semanticheskiy slovar’ sistemy informatsionnogomonitoringa v sfere nauki: Zadachi i funktsii [Semantic vocabulary of the systemof informationmonitoring in scientific sphere: The tasks and functions]. Systems and Means of Informatics 17:124–41.
  23. Zatsman, I., and O. Kozhunova. 2009. Evaluation system for the Russian Academy of Sciences: Objectivesresources- results approach and R&D indicators. 2009 Atlanta Conference on Science and Innovation Policy Proceedings. Eds. S. E.Cozzens, and P.Catalàn. http://smartech. gatech.edu/bitstream/1853/32300/1/104-674-1-PB.pdf.

ON CONVERGENCE OF THE DISTRIBUTIONS OF RANDOM SUMS TO SKEW EXPONENTIAL POWER LAWS.

  • M. E. Grigor’eva  Parexel International,Moscow 121609, Russian Federation, maria-grigoryeva@yandex.ru
  • V. Yu. Korolev  Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, Moscow 119991, Russian Federation, Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, Russian Federation, victoryukorolev@yandex.ru

References

  1. Subbotin, M. T. 1923. On the law of frequency of error. Mat. Sb. 31(2):296–301.
  2. Box, G., and G. Tiao. 1973. Bayesian inference in statistical analysis. Reading, MA: Addison–Wesley. 608 p.
  3. Evans, M., N. Hastings, and J.B. Peacock. 2000. Statistical distributions. 3rd. ed. N.Y.: John Wiley & Sons. 170 p.
  4. Leemis, L.M., and J. T. McQueston. 2008. Univariate distribution relationships. Amer. Stat. 62(1):45–53.
  5. RiskMetric Group, J. P.Morgan. 1996. RiskMetrics Technical Document. N.Y.
  6. Varanasi, M.K., and B. Aazhang. 1989. Parametric generalized Gaussian density estimation. J. Acoust. Soc. Am. 86(4):1404–15.
  7. Nadaraja, S. 2005. A generalized normal distribution. J. Appl. Stat. 32(7):685–94.
  8. West,M. 1987. On scale mixtures of normal distributions. Biometrika 74(3):646–48.
  9. Choy, S. T.B., andA. F. F. Smith. 1997. Hierarchical models with scale mixtures of normal distributions. Test 6:205– 21.
  10. Zolotarev, V.M. 1983. Odnomernye ustoychivye raspredeleniya [One-dimensional stable distributions]. Moscow: Nauka. 304 p.
  11. Korolev, V. Yu., V. E. Bening, L.M. Zaks, and A. I. Zeifman. 2012. Exponential power distributions as asymptotic approximations in applied probability and statistics. Applied Problems in Theory of Probabilities and Mathematical Statistics Related to Modeling of Information Systems (APTP + MS’2012). Book of abstracts of the 6th Workshop (International) (Autumn Session).Moscow: IPI RAN. 60– 71.
  12. Barndorff-Nielsen, O. E. 1977. Exponentially decreasing distributions for the logarithm of particle size. Proc. R. Soc. Lond. Ser. A 353:401–19.
  13. Barndorff-Nielsen,O.E., J.Kent, and S rensenM.. 1982. Normal variance-mean mixtures and z-distributions. Int. Stat. Rev. 50(2):145–59.
  14. Korolev, V. Yu. 2013. Obobshhennye giperbolicheskie raspredelenija kak predel’nye dlja sluchajnyh summ[Generalized hyperbolic distributions as limit distributions for randomsums] [Theory Probab. Appl.] 58(1):117–32.
  15. Zaks, L.M., and V. Yu. Korolev. 2013. Obobshchennye dispersionnye gamma-raspredelenija kak predel’nye dlja sluchajnyh summ [Variance-generalized-gammadistributions as limit laws for randomsums]. Inform. Appl. 7(1):105–15.
  16. Gnedenko, B. V., and A.N. Kolmogorov. 1949. Predel’nye raspredelenija dlja summ nezavisimyh sluchajnyh velichin [Limit distributions for sums of independent random variables]. Moscow–Leningrad:GITTL. 264 p.
  17. Gnedenko, B. V., and V. Yu. Korolev. 1996. Random summation: Limit theorems and applications. Boca Raton: CRC Press. 275 p.
  18. Korolev, V. Yu. 1997. Postroenie modeley raspredeleniy birzhevykh tsen pri pomoshchi metodov asimptoticheskoy teorii sluchaynogo summirovaniya [Construction of models for stock prices by methods of the asymptotic theory of random summation]. Obozrenie Promyshlennoy i Prikladnoy Matematiki [Surveys in Applied and Industrial Mathematics] 4(1):86–102.
  19. Korolev, V. Yu. 2000. Asimptoticheskie svoystva ekstremumov obobshchennyh protsessov Koksa i ikh primenenie k nekotorym zadacham finansovoy matematiki [Asymptotic properties of extrema of compound Cox processes and their applications to some problems of financial mathematics]. Theory Probab. Appl. 45(1):182–94.
  20. Bening, V., and V.Korolev. 2002. Generalized Poisson models and their applications in insurance and finance. Utrecht: VSP. 434 p.
  21. Korolev, V. Yu., and I. A. Sokolov. 2008. Matematicheskie modeli neodnorodnykh potokov ekstremal’nykh sobytiy [Mathematical models of nonhomogeneous flows of extremal events]. Moscow: TORUS PRESS. 200 p.
  22. Korolev, V. Yu., V. E. Bening, and S. Ya. Shorgin. 2011. Matematicheskie osnovy teorii riska [Mathematical foundations of risk theory]. 2nd ed. Moscow: Fizmatlit.
  23. Korolev, V. Yu. 2011. Veroyatnostno-statisticheskie metody dekompozitsii volatil’nosti khaoticheskikh processov [Probabilistic and statistical methods for the decomposition of the volatility of chaotic processes]. Moscow: Moscow University Press. 510 p.
  24. Korolev, V., and N. Skvortsova, eds. 2006. Stochastic models of structural plasma turbulence. Utrecht: VSP. 400 p.
  25. Korolev, V. Yu., I.G. Shevtsova, and S. Ya. Shorgin. 2011. O neravenstvakh tipa Berri–Jesseena dlya puassonovskikh sluchaynykh summ [On the Berry–Esseen-type inequalities forPoisson randomsums]. Informatics andApplications 5(3):64–66.
  26. Korolev, V., and I. Shevtsova. 2012. An improvement of the Berry–Esseen inequality with applications to Poisson and mixed Poisson random sums. Scand. Actuar. J. 2:81–105. Available online since June 4, 2010. DOI:10.1080/03461238.2010.485370.

INVERSION OF SPHERICAL RADON TRANSFORM IN THE CLASS OF DISCRETE RANDOM FUNCTIONS.

  • O. V. Shestakov   Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation, Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, Russian Federation, oshestakov@cs.msu.su
  • M. G. Kuznetsova  Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation, m.g.kuznetsova@gmail.com
  • I. A. Sadovoy   Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation, isadovoy@gmail.com

References

  1. Louis, A.K., and E.T. Quinto. 2000. Local tomographic methods in Sonar. Surveys on solution methods for inverse problems. Vienna: Springer. 147–54.
  2. Finch, D., S. Patch, Rakesh. 2004. Determining a function from its mean values over a family of spheres. SIAM J. Math. Anal. 35(5):1213–40.
  3. Ambartsoumian, G., and P. Kuchment 2005. On the injectivity of the circular Radon transformarising in thermoacoustic tomography. Inverse Probl. 21:473–85.
  4. Agranovsky,M. L., and E. T. Quinto. 1996. Injectivity sets for theRadon transformover circles and complete systems of radial functions. J. Funct. Anal. 139:383–413.
  5. Liu, W., and J. Frank. 1995. Estimation of variance distribution in three-dimensional reconstruction. I. Theory. J. Opt. Soc. Am. A 12:2615–27.
  6. Ushakov, V.G., and N.G. Ushakov. 2001. Vosstanovlenie veroyatnostnykh kharakteristik mnogomernykh sluchaynykh funktsij po proekciyam [Reconstruction of probabilistic characteristics of multivariate random functions from projections]. Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibern. [Bulletin of Moscow University. Computational Mathematics and Cybernetics] 4:32–39.
  7. Shestakov, O. V. 2002. An algorithm to reconstruct probabilistic distributions of multivariate random functions from the distributions of their projections. J. Math. Sci. 112(2):4198–204.
  8. Natanson, I. P. 1949. Konstruktivnaya teoriya funktsiy [Constructive theory of functions]. Moscow-Leningrad: GITTL.
  9. Norton, S. J. 1980. Reconstruction of a two-dimensional reflecting mediumover a circular domain: Exact solution. J. Acoust. Soc. Amer. 67:1266–73.
  10. Kunyansky, L. 2007. Explicit inversion formulas for the spherical mean Radon transform. Inverse Probl. 23:373– 83.
  11. Finch, D., M. Haltmeier, Rakesh. 2007. Inversion of spherical means and the wave equation in even dimensions. SIAM J. Appl.Math. 68(2):392–412.

THE INFORMATION-ANALYTICAL COMPUTER SYSTEM “MEGALITH” IN OPTIMIZATION OF THE DIAGNOSIS AND TREATMENT OF UROLITHIASIS.

  • M. P. Krivenko  Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, Russian Federation, mkrivenko@ipiran.ru
  • S. A. Golovanov  Research Institute of Urology, Moscow 105425, Russian Federation, sergeygol124@mail.ru
  • P. A. Savchenko  Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, Russian Federation, psavchenko@ipiran.ru
  • A. V. Sivkov  Research Institute of Urology, Moscow 105425, Russian Federation, uroinfo@yandex.ru
  • A. P. Suchkov  Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, Russian Federation, asuchkov@ipiran.ru

References

  1. Ramello, A., C. Vitale, and D. Marangella. 2000. Epidemiology of nephrolithiasis. J.Nephrol. 13(Suppl. 3):45– 50.
  2. Trinchieri, A., F. Coppi, E. Montanari, A. Del Nero, G. Zanetti, and E. Pisani. 2000. Increase in the prevalence of symptomatic upper urinary tract stones during the last ten years. Eur. Urol. 37:23–25.
  3. Pearle, M. S., E.A. Calhoun, and G.C. Curhan. 2005. Urologic diseases inAmerica project:Urolithiasis. J.Urology 173:848–57.
  4. Lieske, J.C., L. S. Pena de la Vega, J.M. Slezak, E. J. Bergstralh; C.L. Leibson, K. L. Ho, and M.T. Gettman. 2006. Renal stone epidemiology in Rochester,Minnesota: An update. Kidney Int. 69(4):760– 68.
  5. Johnson, C.M., D.M. Wilson, W.M. O’Fallon, R. S. Malek, and L.T. Kurland. 1979. Renal stone epidemiology: A 25-year study in Rochester, Minnesota. Kidney Int. 16(5):624–31.
  6. Yasui, T, M. Iguchi, S. Suzuki, and K. Kohri. 2008. Prevalence and epidemiological characteristics of urolithiasis in Japan: National trends between 1965 and 2005. Urology 71(2):209–13.
  7. Russian Ministry of Health: Central Research Institute of Organization and Informatization of Population. 2004. Zabolevaemost’ naseleniya Rossii v 2003 godu: Statisticheskie materialy [Morbidity of population of Russia in 2003: Statistical materials]. Ìoscow. Electronic version. http://www.minzdravsoc.ru/docs/mzsr/stat/17.
  8. Russian Ministry of Health: Central Research Institute of Organization and Informatization of Population. 2006. Zabolevaemost’ naseleniya Rossii v 2005 godu: Statisticheskie materialy [Morbidity of population of Russia in 2005: Statistical materials]. Ìoscow. Electronic version. http://www.minzdravsoc.ru/docs/mzsr/stat/21.
  9. Russian Ministry of Health: Central Research Institute of Organization and Informatization of Population. 2008. Zabolevaemost’ naseleniya Rossii v 2007 godu: Statisticheskie materialy [Morbidity of population of Russia in 2007: Statistical materials]. Ìoscow. Electronic version. http://www.minzdravsoc.ru/docs/mzsr/stat/27.
  10. Russian Ministry of Health: Central Research Institute of Organization and Informatization of Population. 2010. Zabolevaemost’ naseleniya Rossii v 2009 godu: Statisticheskie materialy [Morbidity of population of Russia in 2003: Statistical materials]. Ìoscow. Electronic version. http://www.minzdravsoc.ru/docs/mzsr/stat/33.
  11. Routh, J.C., D.A. Graham, and C. P. Nelson. 2100. Epidemiological trends in pediatric urolithiasis at United States freestanding pediatric hospitals. J. Urology 184(3):1100–4.
  12. Bonny, O., A. Rubin, Ch.-L. Huang, W.H. Frawley, C. Y.C. Pak, and O.W. Moe. 2008. Mechanism of urinary calcium regulation by urinary magnesium and pH. J. Am. Soc. Nephrol. 19(8):1530–7.
  13. Djuk, V.A., and V. L. Jemanujel’. 2003. Informatsionnye tekhnologii v mediko-biologicheskikh issledovaniyakh [Information technologies inmedical and biological researches]. St. Petersburg, Russia: Piter, 2003. 525 p.
  14. Liew, P. L., Y.C. Lee, Y.C. Lin, et al. 2007. Comparison of artificial neural networks with logistic regression in prediction of gallbladder disease among obese patients. Digest. Liver Dis. 39(4):356–62.
  15. Bassi, P., E. Sacco, V. De Marco, et al. 2007. Prognostic accuracy of an artificial neural network in patients undergoing radical cystectomy for bladder cancer:Acomparison with logistic regression analysis. BJU Int. 99(5):1007–12.
  16. Stephan, C., C. Xu, P. Finne, et al. 2007. Comparison of two different artificial neural networks for prostate biopsy indication in two different patient populations. J. Urology 70(3):596–601.
  17. Izenman, A. J. 2008. Modern multivariate statistical techniques. Springer. 731 p.
  18. Stone, M. 1974. Cross-validatory choice and assessment of statistical predictions (with discussion). J. Roy. Stat. Soc. B 36:111–47.
  19. Efron, B. 1979. Bootstrap methods: another look at the jackknife. Ann. Stat. 7:1–26.

ANALYSIS OF DATA HOMOGENEITY OF THE CHEMICAL COMPOSITIONS OF STONES IN CASE OF UROLITHIASIS.

  • M. P. Krivenko  Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, Russian Federation, mkrivenko@ipiran.ru
  • S. A. Golovanov  Research Institute of Urology, Moscow 105425, Russian Federation, sergeygol124@mail.ru
  • A. V. Sivkov  Research Institute of Urology, Moscow 105425, Russian Federation, uroinfo@yandex.ru

References

  1. Ramello, A., C. Vitale, and D. Marangella. 2000. Epidemiology of nephrolithiasis. J. Nephrol. 13(3):45–50.
  2. Pak, C.Y., M. I. Resnick, and G.M. Preminger. 1997. Ethnic and geographic diversity of stone disease. Urology 50(4):504–7.
  3. Takasaki, E. 1986. Chronologocal variation in the chemical composition of upper urinary tract calculi. J. Urology 136(1):5–9.
  4. Trinchieri, A., F. Coppi, E. Montanari, A. Del Nero, G. Zanetti, and E. Pisani. 2000. Increase in the prevalence of symptomatic upper urinary tract stones during the last ten years. Eur. Urol. 37:23–25.
  5. Arias Funez, F., E. Garcia Cuerpo, F. Lovaco Castellanos, A. Escudero Barrilero, S. Avila Padilla, and J. Villar Palasi. 2000. Epidemiologia de la litiasis urinaria en nuestraUnidad. Evolucion en el tiempo y factores predictivos. [Epidemiology of urinary lithiasis in our unit. Clinical course in time and predictive factors]. Arch. Esp. Urol. 53(4):343–47.
  6. Tiktinskij, O. L., and V. P. Aleksandrov. 2000. Mochekamennaya bolezn’ [Urolithiasis]. St. Petersburg, Russia: Piter. 379 p.
  7. Shubert, G., M. V. Chudnovskaja, M.T. Tynaliev, N.N. Popovkin, and A.R. Timin. 1990. Osobennosti khimicheskogo sostava i struktury mochevykh kamney i ikh rasprostranennost’ v gorodakh Moskve, Berline i Kirgizskoy SSR [Peculiarities of chemical composition and structure of urinary stones and their prevalence in the cities of Moscow, Berlin, and the Kirghiz SSR]. Russ. J. Urology and Nefrology 5:49–54.
  8. Freitag, D., and K. Hruska. 1983. Pathophysiology of nephrolithiasis. The kidney and body fluids in health and desease. Ed. S. Klahr. N.Y., L.: Plenum Medical Books.
  9. Hettmansperger, T. P. 2006. Multivariate location tests. Encyclopedia of statistical sciences. N.Y.: John Wiley& Sons. 5249–52.
  10. Minimaa, A., andH. Oja. 2006.Multivariatemedian. Encyclopedia of statistical sciences. N.Y.: John Wiley&Sons. 5258–66.
  11. Marden, J. I. 1999. Multivariate rank tests. Multivariate analysis, design of experiments and survey sampling. Ed. S. Ghosh. N.Y.: Marcel Dekker. 401–32.
  12. Chistjakov, S. P. 2010. O novom mnogomernom statisticheskom kriterii odnorodnosti dvukh vyborok [On a new multidimensional statistical test of homogeneity of two samples]. Trudy Karel’skogo Nauchnogo Centra RAN 3:93–97.
  13. Leman, Je. 1979. Proverka statisticheskikh gipotez [Testing of statstical hypothesis]. Moscow: Nauka. 408 p.
  14. Krivenko, M. P. 2011. Zadachi vyborochnogo kontrolya pri dosmotre lits, bagazha i transporta [The tasks of sampling during the inspection of persons, baggage, and vehicles]. Obozrenie Prikladnoy i Promyshlennoy Matematiki 18(1):125–26.
  15. Baringhaus, L., andC.Franz. 2004.On a newmultivariate two-sample test. J. Multivariate Anal. 88:190–206.

PREDICTION AND CLASSIFICATION METHOD FOR CENSORED DATA.

  • T. V. Zakharova   Department of Mathematical Statistics, Faculty ofComputational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation, lsa@cs.msu.ru
  • E. M. Abramova  Department of Mathematical Statistics, Faculty ofComputational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation, houselake@gmail.com

References

  1. Afifi, A.A., and S. P Azen. 1979. Statistical analysis. A computer oriented approach. 2nd ed. New York–San Francisco– London: A Subsidiary of Harcourt Brace Jovanovich Publs.
  2. Truett, J., J. Cornfield, and W. Kannel. 1967. A multivariate analysis of the risk of coronary heart disease in Framingham. J. Chronic Diseases 20:511–24.
  3. Rebrova, O. Ju. 2002. Statisticheskiy analiz meditsinskikh dannykh. Primenenie paketa prikladnykh programm STATISTICA [Statistical analysis of medical data. Application software package STATISTICA]. Moscow: Media Sfera. 312 p.
  4. Halafjan, A.A. 2008. Sovremennye statisticheskie metody meditsinskikh issledovaniy [Advanced statistical methods for medical research].Moscow: Editorial URSS. 320 p.
  5. Zakharova, T.V., and M. V.Zoloeva. 2007. Prognozirovanie sostoyaniya patsientov [The patients’ conditions forecast]. Obozrenie prikladnoi i promyshlennoy matematiki [Review of Applied Industrial Mathematics] 14:298–99.
  6. Dranitsyna, M.A., and T. V. Zakharova. 2009. Klassifikatsiya sostoyaniy patsientov s tsel’yu prognozirovaniya rezul’tatov lecheniya [Classification of patients’ conditions to forecast the outcomes of the treatment]. Obozrenie prikladnoy i promyshlennoymatematiki [Review of Applied Industrial Mathematics] 16:840–41.
  7. Dranitsyna, M.A., and T. V. Zakharova. 2013. Diskriminantnyy analiz dlya klassifikatsii i prognozirovaniya rezul’tatov lecheniya [Discriminant analysis for classification and forecasting outcomes of the treatment]. Systems and Means of Informatics 23(2):89–95.

CONCEPTUAL DECLARATIVE PROBLEM SPECIFICATION AND SOLVING IN DATA INTENSIVE DOMAINS.

  • L. Kalinichenko  Institute of Informatics Problems, Russian Academy of Sciences,Moscow 119333, Russian Federation, leonidandk@gmail.com
  • S. Stupnikov  Institute of Informatics Problems, Russian Academy of Sciences,Moscow 119333, Russian Federation, ssa@ipi.ac.ru
  • A. Vovchenko  Institute of Informatics Problems, Russian Academy of Sciences,Moscow 119333, Russian Federation, itsnein@gmail.com
  • D. Kovalev  Institute of Informatics Problems, Russian Academy of Sciences,Moscow 119333, Russian Federation, dm.kovalev@gmail.com

References

  1. Hey, T., S. Tansley, and K. Tolle, eds. 2009. The fourth paradigm: Data-intensive scientific discovery. Redmond: Microsoft Research. 252 p.
  2. Challenges and opportunities with big data. A community white paper developed by leading researchers across the United States. 2012. Available at: http://cra.org/ccc/docs/init/bigdatawhitepaper.pdf (accessed November 21, 2013).
  3. Kappe l, G., M. Wimmer, W. Retschitzegger, and W. Schwinger. 2011. Leveraging model-based tool integration by conceptual modeling techniques. The evolution of conceptual modeling. Eds.R. Kaschek and L.M. L.Delcambre. Lecture notes in computer science ser. Berlin, Heidelberg: Springer-Verlag. 6520:254–84.
  4. Kalinichenko, L.A., S.A. Stupnikov, and D.O.Martynov. 2007. SYNTHESIS: A language for canonical information modeling and mediator definition for problem solving in heterogeneous information resource environments. M.: IPIRAN. 171 p.
  5. Kalinichenko, L.A., D.O. Briukhov, D.O. Martynov, N.A. Skvortsov, and S.A. Stupnikov. 2007. Mediation framework for enterprise information system infrastructures. 9th Conference (International) on Enterprise Information Systems ICEIS 2007 Proceedings. Funchal. Vol. Databases and information systems integration. 246–51.
  6. Kalinichenko, L.A. 1990. Methods and tools for equivalent data model mapping construction. Advances in database technology — EDBT’90. Eds. F. Buncilhon, C. Thanos, and D. Tsichritzis. Lecture notes in computer science ser. Berlin, Heidelberg: Springer-Verlag. 416:92–119.
  7. Kalinichenko, L.A., and S.A. Stupnikov. 2012. Synthesis of the canonicalmodels for database integrationpreserving semantics of the value inventive data models. Advances in database and information systems.Eds.T.Morzy,T.H.arder, R. Wrembel, et al. Lecture notes in computer science ser. Berlin, Heidelberg: Springer-Verlag. 7503:223–39.
  8. Boley, H., and M. Kifer, eds. 2013. RIF overview. W3C working group note. 2nd ed. Available at: http://www.w3.org/TR/rif-overview/ (accessed November 21, 2013).
  9. Kalinichenko, L., S. Stupnikov, A. Vovchenko, and D. Kovalev. 2013. Rule-based multi-dialect infrastructure for conceptual problem solving over heterogeneous distributed information resources. New trends in databases and information systems. Selected Papers of the 17th European Conference on Advances in Databases and Information Systems and Associated Satellite Events. Advances in Intelligent Systems and Computing 241:61–68.
  10. Leone, N., G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. 2006. The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3):499–562.
  11. Kalinichenko, L.A., and S. A. Stupnikov. 2008. Constructing ofmappings of heterogeneous informationmodels into the canonical models of integrated information systems. ADBIS 2008 Proceedings. Pori: Tampere University of Technology. 106–22.
  12. Abrial, J.-R. 1996. The B-book: Assigning programs to meanings.Cambridge:CambridgeUniversityPress. 816 p.
  13. Skvortsov, N.A. 2012. Otobrazhenie modeley dannykh NoSQL v ob”ektnye specifikatsii [Mapping of NoSQL data models to object specifications]. Trudy 14-y Vserossiyskoy nauchnoy konferentsii “Elektronnye biblioteki: Perspektivnye metody i tekhnologii, elektronnye kollektsii”’ RCDL 2012 [14th Russian Conference on Digital Libraries RCDL 2012 Proceedings]. CEUR Workshop Proceedings 934:53–62.
  14. Stupnikov, S.A. 2013. Otobrazhenie grafovoymodeli dannykh v kanonicheskuyu ob”ektno-freymovuyu informatsionnuyu model’ pri sozdanii sistem integratsii neodnorodnykh informatsionnykh resursov [Mapping of a graph data model into an object-frame canonical information model for the development of heterogeneous information resources integration systems]. Trudy 15-y Vserossiyskoy nauchnoy konferentsii “Elektronnye biblioteki: Perspektivnye metody i tekhnologii, elektronnye kollektsii” RCDL 2013 [15th Russian Conference on Digital Libraries RCDL 2013 Proceedings]. Yaroslavl: P.G.Demidov Yaroslavl State University. 193–202.
  15. Skvortsov, N.A. 2013. Otobrazhenie modeli dannykh RDFv kanonicheskuyumodel’ predmetnykh posrednikov [Mapping of RDF data model into the canonical model of subject mediators]. Trudy 15-y Vserossiyskoy nauchnoy konferentsii “Elektronnye biblioteki: Perspektivnye metody i tekhnologii, elektronnye kollektsii” RCDL 2013 [15th Russian Conference on Digital Libraries RCDL 2013 Proceedings]. Yaroslavl: P.G. Demidov Yaroslavl State University. 202–9.
  16. Stupnikov, S.A. 2013. Verifitsiruemoe otobrazhenie modeli dannykh, osnovannoy na mnogomernykhmassivakh, v ob”ektnuyu model’ dannykh [A verifiable mapping of a multidimensional array data model into an object data model]. Inform. Appl. 7(3):22–34.
  17. Fagin, R., P.G. Kolaitis, R. J. Miller, and L. Popa. 2005. Data exchange: Semantics and query answering. Theor. Comput. Sci. 336:89–124.
  18. Lenzerini, M. 2002. Data integration: A theoretical perspective. ACM Symposium on Principles of Database Systems (PODS) Proceedings. 233–46.
  19. Kalinichenko, L.A., D.O. Martynov, and S. A. Stupnikov.  2004. Query rewriting using views in a typed mediator environment. Advances in databases and information systems. Eds. G. Gottlob, A. Benczur, and J. Demetrovics. Lecture notes in computer science ser. Berlin, Heidelberg: Springer-Verlag. 3255:37–53.
  20. Boley, H., and M. Kifer, eds. 2013. RIF basic logic dialect. W3C recommendation. 2nd ed. Available at: http://www.w3.org/TR/rif-bld/ (accessed November 21, 2013).
  21. De Sainte Marie, C., G. Hallmark, and A. Paschke, eds. 2013. RIF production rule dialect. W3C recommendation. 2nd ed. Available at: http://www.w3.org/TR/rif- prd/ (accessed November 21, 2013).
  22. Boley, H., and M. Kifer, eds. 2013. RIF framework for logic dialects.W3Crecommendation. 2nd ed.Available at: http://www.w3.org/TR/rif-§d/ (accessed November 21, 2013).
  23. Kifer, M., ed. 2010. RIF core logic programming dialect based on the well-founded semantics. Available at: http://ruleml.org/rif/RIF-CLPWD.html (accessed November 21, 2013).
  24. Van Gelder, A., K.A. Ross, and J. S. Schlipf. 1991. The well-founded semantics for general logicprograms. J.ACM 38(3):620–50.
  25. Heymans, S., and M. Kifer, eds. 2009. RIF core answer set programming dialect. Available at: http://ruleml.org/rif/RIF-CASPD.html (accessed November 21, 2013).
  26. Gelfond, M., and V. Lifschitz. 1988. The stable model semantics for logic programming. Logic Programming: 5th Conference and Symposium Proceedings. 1070–80.
  27. De Bruijn, J., and C. Welty, eds. 2013. RIF RDF and OWL Compatibility. W3C recommendation. 2nd ed. Available at: http://www.w3.org/TR/rif-rdf-owl/ (accessed November 21, 2013).
  28. Motik, B., P. F. Patel-Schneider, and B. Parsia, eds. 2012. OWL 2 Web ontology language structural specification and functional-style syntax. W3C recommendation. 2nd ed. Available at: http://www.w3.org/TR/owl2-syntax/ (accessed November 21, 2013).
  29. Shvaiko, P., and J. Euzenat. 2005. A survey of schemabasedmatching approaches. J.Data Semantics IV:146–71.
  30. Abiteboul, S., M. Bienvenu, A. Galland, et al. 2011. A rule-based language for Web data management. 30th ACM Symposium on Principles of Database Systems Proceedings. ACMPress. 283–92.
  31. Gelfond, M. 2008. Answer sets. Handbook of knowledge representation. Elsevier. 285–316.
  32. Motik, B., and R. Rosati. 2007. Closing semantic Web ontologies. University of Manchester Report. Available at: http://www.cs.ox.ac.uk/people/boris.motik/pubs/ mr06closing-report.pdf (accessed November 21, 2013).
  33. Chen, P. P., B. Thalheim, and L. Y. Wong. 1999. Future directions of conceptual modeling. Conceptual modeling. Eds. P. P. Chen, J. Akoka, H. Kangassulu, and B. Thalheim. Lecture notes in computer science ser. Berlin, Heidelberg: Springer-Verlag. 1565:287–301.
  34. Costal, D., C. G‚omez, and G. Guizzardi. 2011. Formal semantics and ontological analysis for understanding subsetting, specialization and redefinition of associations in UML. Conceptual modeling — ER 2011. Eds.M. Jeusfeld, L. Delcambre, and T.W. Ling. Lecture notes in computer science ser. Berlin, Heidelberg: Springer-Verlag. 6998:189–203.
  35. Martinez, Y., C. Cachero, M. Matera, S. Abrahao, and S. Lujan. 2011. Impact ofMDE approaches on the maintainability of Web applications: An experimental evaluation. Conceptual modeling — ER 2011. Eds. M. Jeusfeld, L. Delcambre, and T.W. Ling. Lecture notes in computer science ser. Berlin, Heidelberg: Springer-Verlag. 6998:233–46.
  36. Castro, L. F. Bai“ao, and G. Guizzardi. 2011. A semantic qriented method for conceptual data modeling in OntoUML based on linguistic concepts. Conceptual modeling — ER 2011. Eds. M. Jeusfeld, L. Delcambre, and T.W. Ling. Lecture notes in computer science ser. Berlin, Heidelberg: Springer-Verlag. 6998:486–94.
  37. Fillottrani, P.R., E. Franconi, and S. Tessaris. 2011. The ICOM 3.0 intelligent conceptual modelling tool and methodology. Semantic Web. IOS Press. 1–14. Available at: http://www.semantic-web- journal.net/sites/default/¦les/swj105 1.pdf (accessed November 21, 2013).
  38. Maus, C., S. Rybacki, and A.M. Uhrmache. 2011. Rule-based multi-level modeling of cell biological systems. BMC Syst. Biol. 5:166. Available at: http://www.biomedcentral.com/content/pdf/1752- 0509-5-166.pdf (accessed November 21, 2013).
  39. Calvanese, D., G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati. 2007. MASTRO-I: Efficient integration of relational data throughDL ontologies. 2007 Workshop (International) on Description Logic (DL 2007) Proceedings. CEURWorkshop Proceedings. 250.
  40. Cosentino, V., M.D. Del Fabro, and A. El Ghali. 2012. Amodel driven approach for bridging ILOGrule language and RIF. RuleML 2012 Proceedings. CEUR Workshop Proceedings. 874. Available at: http://ceur-ws.org/Vol- 874/paper9.pdf (accessed November 21, 2013).
  41. Gonzalez-Moriyon, G., L. Polo, D. Berrueta, and C. Tejo-Alonso. 2012. Final steel industry public demonstrators. ONTORULE deliverable D5.5. Available at: http://ontorule-project.eu/ outcomes%3Ffunc=¦leinfo&id=94.html (accessed November 21, 2013).
  42. Loo, B. T., T. Condie, M. Garofalakis, D. E. Gay, J.M. Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. 2006. Declarative networking: Language, execution and optimization. ACM SIGMOD Conference Proceedings. 97–108.
  43. Grumbach, S., and F. Wang. 2010. Netlog, a rule-based language for distributed programming. Practical aspects of declarative languages. Eds. M. Carro and R. Pe“na. Lectire notes in computer science ser. Berlin, Heidelberg: Springer-Verlag. 5937:88–103.
  44. Alvaro, P., W.R. Marczak, N. Conway, J.M. Hellerstein, D. Maier, and R. Sears. 2010. Dedalus: Datalog in time and space. Datalog reloaded. Eds. O. de Moor, G. Gottlob, T. Furche, and A. Sellers. Lectures notes in computer science ser. Berlin, Heidelberg: Springer-Verlag. 6702: 262–81.
  45. Grossmann, G., R. Thiagarajan, M. Schrefl, and M. Stumptner. 2011. Conceptual modeling approaches for dynamic Web service composition. The evolution of conceptual modeling. Eds. R. Kaschek and L.M. L. Delcambre. Lecture notes in computer science ser. Berlin, Heidelberg: Springer-Verlag. 6520:180–204.
  46. Henderson-Sellers, B. 2011. Random thoughts on multilevel conceptual modelling. The evolution of conceptual modeling. Eds. R. Kaschek and L.M. L. Delcambre. Lecture notes in computer science ser. Berlin, Heidelberg: Springer-Verlag. 6520:93–116.
  47. Falbo, R.A., F. B. Ruy, and R.D. Moro. 2005. Using ontologies to add semantics to a software engineering environment. SEKE 2005 Proceedings. Curran Associates. 151–56.
  48. Berre, A., and M. Missikoff (Moderators). 2011. Panel: Modeling for the future Internet. Conceptual modeling — ER 2011. Eds.M. Jeusfeld, L. Delcambre, and T.W. Ling. Lecture notes in computer science ser. Berlin,Heidelberg: Springer-Verlag. 6998: 526–27.
  49. Porto, F., and S. Spaccapietra. 2011. Data model for scientificmodels and hypotheses. The evolution of conceptual modeling. Eds. R. Kaschek and L.M.L. Delcambre. Lecture notes in computer science ser. Berlin, Heidelberg: Springer-Verlag. 6520: 285–305.
  50. Racunas, S. A., N.H. Shah, I. Albert, and N. V. Fedoroff. 2004. Hybrow: A prototype system for computer-aided hypothesis evaluation. Bioinformatics 20(1):257–64.
  51. Sharpe, W., G. J. Alexander, and J.W. Bailey. 1998. Investments. Prentice Hall. 962 p.
  52. Gabbay, D.M. 2012. What is negation as failure? Logic programs, norms and action. Eds. A. Artikis, R. Craven, N.K.C ic ekli, et al. Lecture notes in computer science ser. Berlin, Heidelberg: Springer-Verlag. 7360:52–78.
  53. Briukhov, D.O., A.E. Vovchenko, V.N. Zakharov, O. P. Zhelenkova, L.A. Kalinichenko, D.O. Martynov, N.A. Skvortsov, and S.A. Stupnikov. 2008. Arkhitektura promezhutochnogo sloya predmetnykh posrednikov dlya resheniya zadach nad mnozhestvom integriruemykh neodnorodnykh raspredelennykh informatsionnykh resursov v gibridnoy grid-infrastrukture virtual’nykh observatoriy [The middle ware architecture of the subject mediators for problem solving over a set of integrated heterogeneous distributed information resources in the hybrid grid-infrastucture of virtual observatories]. Inform. Appl. 2(1):2–34.
  54. ATL Project. 2013. Available at: http://www.eclipse.org/ atl/ (accessed November 21, 2013).

PROBABILISTIC METHODS FOR SELF - CORRECTING HARDWARE DESIGN.

  • S. Dolev  Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel, dolev@cs.bgu.ac.il
  • S. Frenkel  Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, Russian Federation, Moscow Institute of Radio, Electronics, and Automation  «MIREA», Moscow 119454, Russian Federation, fsergei@mail.ru
  • D.E. Tamir  Department of Computer Science, Texas State University, San-Marcos, TX 78666, USA, dt19@txstate.edu

References

  1. Bil‚en, S., and A. Price. 2007. Modulation classification for radio interoperability via SDR. SDR 07 Technical Conference and Product Exposition Proceedings. http://www.slideshare.net/kirill443/12-4-5647963 (accessed November 7, 2013).
  2. Lala, P. 2000. Self-checking and fault-tolerant digital design. Morgan Kaufmann Publs. 400 p.
  3. Sigal, A., R. Lipton, R. Rubinfeld, and M. Sudan. 1990. Reconstructing algebraic functions frommixed data. 33rd Annual Symposium on Foundations of Computer Science. 503–12.
  4. Gemmell, P., R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. 1991. Self-testing/correcting for polynomials and for approximate functions. 23rd Annual ACM Symposium on Theory of Computing Proceedings. 32–34.
  5. Lee, D.U., R. Cheung, W. Luk, and J. Villasenor. 2008. Hardware implementation trade-offs of polynomial approximations and interpolations. IEEE Trans. Comput. 57(5):686–701.
  6. Dolev, Sh., and S. Frenkel. 2009. Extending the scope of self-correcting. 13th Conference (International) on Applied Stochastic Models and Data Analysis (ASMDA2009) Proceedings. 458–62.
  7. Nicely, T.R. Some results of computational research in prime numbers (Computational number theory). http://www.trnicely.net/pentbug/pentbug.html (last retrieved December 2010).
  8. Rubinfeld, R. 1992. Batch checking with applications to linear functions. Inform. Process. Lett. 42:77–80.
  9. Spielman, D. 1996. Highly fault-tolerant parallel computation. 37th IEEE Annual Symposium on Foundations of Computer Science Proceeding. 154–63.
  10. Oppenheim, A. V., R.W. Schafer, and J.R. Buck. 1999.  Discrete-time signal processing. Upper Saddle River, NJ: Prentice-Hall. 871 p.
  11. Berlekamp, E., and L. Welch. 1986. Error correction of algebraic block codes. U.S. Patent No. 4,633,470.
  12. Tertinek, S., and C. Vogel. 2008. Reconstruction of nonuniformly sampled bandlimited signals using a differentiator-multiplier cascade. IEEE Trans. Circuits Syst. 55(8):2273—86.
  13. Pang, Y., and K. Radecka. 2008. Optimizing imprecise fixed-point arithmetic circuits specified by Taylor series through arithmetic transform. Design Automation Conference DAC’08 Proceedings. 397–402.
  14. Yekhanin, S. 2011. Locally decodable codes. Foundations Trends Theoretical Computer Sci. 7(1):1–117.
  15. Rahardja, S., and B. J. Falkowski. 2001. Efficient algorithm to calculate Reed–Muller expansions over GF(4). IEE Proceedings — Circuits, Devices and Systems. 148(6):289, 297.
  16. Leroux, C., G. LeMestre, C. Jego, P. Adde, and M. Jezequel. 2008. A 5-Gbps FPGA prototype of a (31,29)2 Reed–Solomon turbo decoder. 5th Symposium (International) on Turbo Codes and Related Topics Proceedings. 67–72.