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PREFACE

The present volume includes the articles devoted to the de-
velopment and the study of mathematical and computer models
intended to applied problems arising in various fields. Most of the
presented researches are performed by the scientists from ORT
Braude College (Karmiel, Israel) and the Institute of Informatics
Problems of the Russian Academy of Sciences (Moscow, Russian
Federation). The Joint Israeli-Russian Symposium on Stochastic
models, which took place in Karmiel (2006), has initialized coop-
eration between these scientific centers. The XXVI International
Seminar on Stability of the Stochastic Models (Naharya, 2007),
organized under the aegis of the mentioned institutes, became an
important stage in the development of this partnership.

The mutual agreement between two organizations, signed in
2006, suggests performing of joint projects and the specialists
exchange in the research and the educational areas. The present
volume is one of results of this fruitful cooperation.

Persistent contacts between two centers significantly influence
the subjects and encourage the development of new fundamental
and applied outcomes.

The presented volume also contains results obtained in coopera-
tion of experts from two institutes with numerous researches from
other leading scientific centers such as the Lomonosov Moscow
State University, the Russian State Humanitarian University (Rus-
sia), the Technion-the Israeli Technological University, University
of Haifa (Israel), the Norwegian University of Science and Technol-
ogy, University of Salerno (Italy) etc.

The joint paper of the authors from the Institute of Informatics
Problems of the Russian Academy of Sciences and the Holon Insti-
tute of Technology is written in the framework of mutual agreement
signed in 2005.

Many results presented in the volume can be consider as an
extension of the results presented on the Joint Israeli-Russian
Symposium on Stochastic models (Karmiel, 2006) and the XXVI



4 Preface

International Seminar on Stability of the Stochastic Models (Na-
harya, 2007).

All the manuscripts have undergone reviewing process and have
been selected by leading scientists of ORT Braude College and the
Institute of Informatics Problems.

The Editors hope that the volume publication will encourage
the cooperation between two institutes and will expand the fields of
joint investigations performed by the scientists of Israel and Russia.

Editors:
Sergey Shorgin — Deputy Director of the Institute of Informat-

ics Problems of the Russian Academy of Sciences
Zeev (Vladimir) Volkovich — Head of the Software Engineering

Department, ORT Braude College, Israel

Предисловие

Настоящий специальный выпуск ежегодника трудов Инсти-
тута проблем информатики РАН «Системы и средства информа-
тики» включает статьи, посвященные разработке и исследованию
математических и компьютерных моделей, предназначенных для
решения прикладных проблем в различных отраслях науки и
практики. Представленные исследования выполнены в основном
специалистами из Института проблем информатики Российской
академии наук (Москва, Российская Федерация) и Колледжа
ОРТ Брауде (Кармиель, Израиль). Начало сотрудничеству между
этими двумя научными центрами было положено в ходе Из-
раильско-Российского симпозиума по стохастическим моделям
(Кармиель, 2006), а важным этапом в развитии совместных работ
стал XXVI Международный семинар по устойчивости стохасти-
ческих моделей, прошедший по эгидой названных организаций в
Нахарии в 2007 году.

Соглашение о сотрудничестве между нашими организация-
ми, подписанное в 2006 году, предусматривает осуществление
совместных проектов и обмен специалистами в научно-иссле-
довательской и образовательной областях. Настоящий сборник
статей явлется одним из результатов этого плодотворного сотруд-
ничества.

Постоянные научные контакты между специалистами обоих
организаций оказывают большое положительное влияние на рас-
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ширение тематики исследований и достижение принципиально
новых фундаментальных и прикладных результатов.

В сборнике представлены также работы, содержащие резуль-
таты исследований ученых из других ведущих научных цен-
тров, таких как Московский государственный университет име-
ни М.В.Ломоносова, Российский государственный гуманитарный
университет (Россия), Технион-Израильский технологический
университет, Хайфский университет (Израиль), а также Нор-
вежский университет науки и технологии, Университет Салерно
(Италия) и др., выполненных в рамках совместных проектов с
учеными из Института проблем информатики РАН и Колледжа
ОРТ Брауде.

Совместная статья авторов из Института проблем информа-
тики РАН и Холонского Технологического Института выполнена
в соответствии с Соглашением о сотрудничестве, заключенным
между этими организациями в 2005 г.

Многие результаты, представленные в сборнике, явились
дальнейшим развитием результатов, представленных в 2006 на
Израильско-Российский симпозиуме по стохастическим моделям
и в 2007 году на XXVI Международном семинаре по устойчиво-
сти стохастических моделей.

Статьи сборника прошли рецензирование и отбор ведущими
учеными Института проблем информатики РАН и Колледжа ОРТ
Брауде.

Составители сборника выражают надежду, что это издание
станет придаст новый импульс сотрудничеству между нашими
двумя организациями и расширит сферу совместных исследова-
ний и разработок ученых и специалистов Израиля и России.

Редакторы-составители:
Зеев (Владимир) Волькович — декан факультета инженерно-

го программирования, Колледж ОРТ Брауде, Израиль
С.Я. Шоргин — заместитель директора Института проблем

информатики Российской академии наук
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In the current paper we outline a new approach to the “true
number of clusters” determination problem. Our method combines
both the stability and density concentration approaches. In the
spirit of the density estimation methodology, we consider each
cluster as an island of “high” density of items in a sea of “low”
density. In addition, following the cluster steadiness concept, we
suggest that these islands are “resistant” to a random noise. In
other words, we believe that adding noise to the attributes of the
data elements does not change the clusters structure. A second
novelty of our approach is the proposition to measure the similar-
ity between source-data clusters and noisy-data clusters by means
of two sample test statistics, represented by probability metrics-
distances. Such a pair seems as an appropriate database for the
true number of clusters determination. As a consequence of the
high resemblance between these samples, within the partitions,
the similarity is expected to be amplified under the true number
of clusters. According to our model, the true number of clusters
corresponds to the empirical distance distribution which is most
concentrated at zero. Thus, our procedure can be considered as the
creation of an empirical normalized distance distribution, followed
by testing its concentration at zero. This test is carried out by
means of the sample mean and the size of the sample first quartile.

1. Introduction

Clustering is a technique for intellectual data analysis. It is
applied in disciplines like social sciences, biology and computer
science, in attempts to acquire intuitive understanding of the data
meaning. Clustering of data items is a basic tool for achieving
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this goal. Group membership is typically discovered via an iterative
clustering procedure which employs a distance-like function that
measures the resemblance between data points. The result of the
clustering process is a partition of the source data which is charac-
terized by the highest quality score. Excluding the data itself, two
crucial input parameters are required for the application of iterative
clustering procedures: an initial partition and a suggested number
of clusters. In many practical applications, the problem of choosing
the right number of clusters is still, more or less, unsolved. It
is well known that this important task is “ill posed” [Jain and
Dubes, 1988], [Gordon, 1999]. For example, the ‘correct’ number of
clusters can depend on the scale in which the data is presented (see,
for example [Chakravarthy and Ghosh, 1996.]). Many approaches
have been offered to solve this problem. Up to now, none of them
has been recognized as superior to the others. Most methods can
be classified into the following groups:

• Multivariate statistical indexes which compare dispersions
within and between the clusters;

• Stability (similarity, merit) functions that evaluate the con-
sistency of labels assignments to sample elements;

• Density estimation approaches.

The following papers are members of the first group: [Dunn74],
[Hubert74], [Calinski74], [Hartigan85], [Krzanowski85], [Sugar03]
and [Tibshirani01]. In papers belonging to the second group, stabil-
ity is understood as the fraction of times items, or pairs of items, are
assigned to the same cluster. These methods follow the basic idea
that, a clustering algorithm, repeatedly applied to random samples
from a population, has to construct similar clusterings (see, for
example, [Roth02], [Levine01] and [Ben-Hur02]). Clustering meth-
ods, based on estimation of the underlying data density, assume that
the clusters are related to modes of the probability density function.
These clustering procedures allocate an item to one “domain of
attraction” of a density peak [Wishart69], ([Hartigan75] Section 11)
and [Hartigan81]. The number of clusters is identified here, as the
quantity of disjoint intervals having densities exceeding a predefined
value (see, for example [Cuevas00], [Cuevas01] and [Stuetzle03]).

In the current paper we address to the “true number of clusters”
determination problem. Our method combines the stability and the
density concentration approaches. Specifically, in the spirit of the
density estimation methodology, we consider each cluster as an
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island of “high” density of items in a sea of “low” density. In
addition, following the cluster steadiness concept, we suggest that
these islands are “resistant” to a random noise. In other words, we
presume that adding noise to the attributes of the data elements
does not affect much the clusters structure if the number of clusters
is chosen correctly. Another novelty of our approach is that, we
propose to measure the similarity between source-data clusters
and noisy-data clusters by means of two sample test statistics,
represented by probability metrics-distances. Such a pair seems
appropriate for the true number of clusters determination because
high resemblance between these samples, within the partitions, is
expected to be present only under the true number of clusters.

The method proposed here is outlined as follows: Pairs of sam-
ples are considered for each tested number of clusters such that the
first one is drawn without replacement from the data. The second
one is obtained by adding a random noise to the elements of the
first sample. The noise is simulated as a sequence of independent
identical distributed random variables. The distances between the
pairs are measured via a probability metric between the samples
within the clusters. This kind of metric appears in two sample tests
where it is required to settle on whether two specified samples
are derived from the same population. In this paper we use the
probabilistic metrics which compare the mean kernel distance of
the pooled clustered sample to the mean kernel distances obtained
in both drawn clustered samples. In order to employ these distances
each of the samples is clustered twice: alone and together with
the other. Actually, distances compare the partitions found. Once
the obtained metrics values are sufficiently small, the partitions
are considered close. Samples outliers and drawbacks of clustering
algorithms contribute to the instability of results obtained. This
obstacle is overcome by repeating the described routine many
times with appropriate outcomes normalization. According to our
model, the true number of clusters corresponds to the empirical
distance distribution which is most concentrated at zero. Hence,
our procedure can be considered as the creation of an empirical
normalized distance distribution, and afterwards the testing of its
concentration at zero. This test can be carried out by means of
numerous simple statistics such as the sample mean and the size of
the sample first quartile. We choose the “true” number of clusters
as the one, which minimizes the normalized average probability
distance or the normalized sample first quartile.
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2. The approach

We concern a finite subset X = {x1, x2, . . . ,xn} of the d-dimen-
sional Euclidean space Rd. For a specified subset S ⊂ X a partition
Πk(S) of S is a family of subsets of S

Πk(S) = {π1(S), π2(S), . . . , πk(S)},
for which the following holds:

k⋃

j=1

πj(S) = S

and
πi(S) ∩ πj(S) = φ, i 6= j.

The elements of Πk(S) are called clusters. We assume that
a clustering algorithm Cl is available. The algorithm has the sample
and the given number of clusters k as input parameters. A data
partition is the algorithm output.

In the framework of our approach we consider for each sample

S, drawn from X, its noisy version S̃ composed from the elements
x̃i = xi + εi where xi ∈ S and εi are independent identically dis-
tributed random variables, i = 1, . . . ,n. We further assume, a very
common point of view, that the random variables εiare normally
distributed having the mean zero, εi ∼ N(0,σ), where the stan-
dard deviation σ presents the noise altitude. Certainly, σ can be
considered a control parameter. Very small values of σ can lead
to the procedure instability because, in this case, both samples
are actually drawn from the same population. Big values of σ,
actually yield noisy samples which are uniformly distributed. This
situation is, also, not desirable. Effects of the σ size for three
cases corresponding to σ = 0.1, 0.3, 0.5, for a sample drawn from
a two-cluster population, are presented on Fig. 1 (see supplementary
sheet 1).

In order to characterize a resemblance between two given sam-
ples, say S1 and S2, having a size n, we use the kernel R-distances
presented in [Klebanov03] and [Klebanov05]. This distance depends
on a real symmetric negative definite kernel K(x, y). Such a dis-
tance can be defined as:

d2(S1,S2) = 2∆(S1,S2) − ∆(S1,S1) − ∆(S2,S2),
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where
∆(S1,S2) =

1

n2

∑

xi∈S1

∑

yj∈S2

K(xi,yj).

Similar distances have been suggested in [Baringhaus04] and
[Zech05]. In our methodology we use these distances as follows:
For given number of clusters k and given noise level σ, we construct

M pairs of samples S
(m)
1 and S

(m)
2 (m = 1, . . .,M) such that

S
(m)
1 is selected randomly, without replacement, from X. The sample

S
(m)
2 =

˜
S

(m)
1 is its noisy version S

(m)
1 simulated each time indepen-

dently according to the described above procedure. We introduce

S(m) = S
(m)
1 ∪ S

(m)
2

and its partition
Π

(m)
k = Cl(S(m), k).

Now we consider

S(m)
1l

= S(m)
1

∩ π
(m)
l (S(m)), S(m)

2l
= S(m)

2
∩ π

(m)
l (S(m))

as the subsets of S
(m)
1 and S

(m)
2 , respectively, the elements of which

are members of the cluster π
(m)
l (S(m)). We quantify dissimilarities

D
(m)
l , l = 1, . . . , k amid these sets inside π

(m)
l (S(m)) with the help

of the R-distances: D
(m)
l = d2(S(m)

1l
,S(m)

2l
). Thus, the dissimilarity

between S
(m)
1 and S

(m)
2 is defined as

D(m)(S
(m)
1 ,S

(m)
2 ) =

1

k

k∑

l=1

abs
(
D

(m)
l

)
.

The outline of the suggested algorithm is as follows:

• k∗maximal number of clusters to be tested;

• n size of the samples;

• M number of samples pairs;

• T number of the averaged distance values;

• K a negative definite kernel;

• σ a noise level.

1. For k = 2 : k∗ do

2. For t = 1 : T do
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3. For m = 1 : M do

4. S
(m)
1 = sample (X,n);

5. Simulate a noisy sample S
(m)
2 ;

6. dis(m) = D(m)(S
(m)
1 ,S

(m)
2 );

7. end for 3

8. Dist =
1

M

M∑
m=1

dis(m);

9. end for 2

10. Normalize the array Dis;

11. end for 1

12. The selected number of clusters is the one that corre-
sponds to the most concentrated distribution of Dis at
zero.

3. Experiments

In order evaluate the functioning of our method, we present
several numerical experiments on synthetic and real datasets. The
drawn samples are clustered by the standard k-means algorithm.
The concentration of the empirical distances distributions is charac-
terized by means of the average and the C25 (the 25th percentile).
The normalization is provided by the sample 95th percentile. The
Gaussian kernel

K(x, y) = ‖x− y‖2

is used. We perform 10 trials for each experiment with k∗ = 7,
n = 200, M = T = 30 and σ = 0.1. The results are presented via
the error-bar plots of the average and the C25 of the distances in
the trials. The sizes of the error bars are two standard deviations.

3.1. Synthetic datasets. The considered synthetic datasets
have been simulated as mixtures of NC, two-dimensional, Gaussian
distributions having the same standard deviation denoted by SD.
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The components means are situated on the unit circle with an equal
distance between each neighboring pair. Each component contains
3000 points. We denote such datasets as G_NC_SD. A scatter-plot
of such a dataset is presented in the following figure.

As we can see, in the presented dataset, the components are
not disjoint. However the proposed succeeds to point out the true
number of clusters.

Another dataset considered is a G_4_04 dataset. Obviously, this
collection is less separable. Consequently, the outcomes here are
vaguer.

3.2 Real datasets. The first dataset is a text collection data
which has been chosen from: ftp://ftp.cs.cornell.edu/pub/smart/. It
includes

• DC0–Medlars Collection (1033 medical abstracts);

• DC1–CISI Collection (1460 information science abstracts);

• DC2–Cranfield Collection (1400 aerodynamics abstracts).

This dataset was considered in several papers (see, for example
[Kogan03]. Applying the well-known “bag of words” approach, 600
“best” terms were selected (see, for example, [Dhillon03] for term
selection details). The dataset is embedded into Euclidian spaces
having dimensions of 600. A dimension reduction is provided by the
Principal Component Analysis. The data is recognized to be well
separated by means of the two leading principal components. Thus,
we use this data representation in our experiments. Accordingly,
we operate with this data representation in our experiments. As
demonstrated in Fig. 5 (see supplementary sheet 1), our method
precisely determines the true number of clusters in this case.

The second considered dataset is the, well known, Iris Flower
Dataset available at http://fmwww.bc.edu/ec-p/data/micro/iris.dta.
This four dimensional dataset includes information on three flowers
types: 0 — Iris Setosa, 1 — Iris Versicolour and 2 — Iris Virginica.
50 elements are available for each flower type. It is well known
that one of the sets is linearly separable from the others while the
other two are not. Analysis of this dataset encountered difficulties in
detecting all three clusters, (see for example [Roth02]) where two
clusters were detected. These difficulties are due to the nonlinear
separation of the third cluster. The fact has been explained such
that the third cluster had not been detected due to the nonlinearity
of its separation from others. In the paper [Roth02] a variant of
the k-means algorithm has been used. Such an algorithm produces
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linear boards between the clusters. We also use a variant of the
k-means algorithm; however our methodology detects a three clus-
ter structure.

4. Summary

We propose a new methodology for cluster stability. It combines
the stability and density concentration approaches. In the spirit of
the density estimation point of view, we consider each cluster as
an island of “high” density in a sea of “low” density. We compare
pairs of samples, where the second sample is obtained from the
first by adding noise to each of it’s elements. We find that adding
an appropriate noise to the attributes of the data elements does
not have adverse effect on the detected clusters structure. We
offer to measure dissimilarities between a clustered sample and
its clustered noisy version by means of kernel two sample test
statistics. Several provided experiments demonstrate that the cluster
islands are detected.

According to our model, the true number of clusters corresponds
to the empirical distance distribution which is most concentrated
at zero. Our procedure can be considered as the creation of an
empirical normalized distance distribution, followed by testing its
concentration at zero. This test is carried out by means of the
sample mean and the size of the sample first quartile

5. Future work

Several options of extended work are considered:

• Noise stability limit — applying the algorithm on varying
levels of noisy data sets in order to determine the noise level
that causes the algorithm to collapse.

• Creation of a theoretical model which allows estimating the
optimal noise altitude.

• A precision/recall comparison with known algorithms in or-
der to test performance of the algorithm.
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This paper suggests a characterization of fault localization
strategies and a classification of probability-based search algo-
rithms, which are widely used in the current practice of complex
computer systems and networks systems maintenance and ser-
vice. The characterization is performed in terms of some tuples
including: characteristics of fault models, localization procedures,
cost functions, and other factors. Such characterization (and an
induced classification) can be used for a rational choice of search
algorithms at early system design stages, for development of
strategies of possible fault localization during the target systems
maintenance and service. Search algorithms classification is based
on the special notation like those used in the queuing theory.

1. Introduction

In computer systems development and service area, the impor-
tant part of the system service cost falls into faults search (“fault
management” [1, 2]), which is aimed to detect, diagnose and correct
the possible faults during the system operations.

In order to provide a qualified fault diagnostic and localization
for a computer system, it is necessary to involve numerous knowl-
edge about all aspects of the faults search activity, from the search
algorithms complexity to the hardware testability design issues.

The fault diagnostic and localization process in computer sys-
tems is a probabilistic in nature, that is the number of steps until
any fault location can be recognized is a priory uncertainly. Fault
search and localization probabilistic models are just constructed to
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model various types of the uncertainties [2,3]. These models are,
in fact, various search strategies, which specify the order in which
probes and measurements required are to be performed, the type
measurements (e. g., active probe selection or passive symptoms
analysis [4]), etc.), and numerical models (e. g., Markov Chains
Solver, Bayesian networks) [5, 6, 8]) used in the fault diagnostic
planning.

However, in current computer engineering activity many con-
ceptual aspects of the faults search problem mentioned above is
often not taken into account. For example, in [4] the algorithms
of finding minimal probe set is co-ordinated rather weakly with
the problem of fault localization, in spite of the semantic closeness
of these tasks. In [7] the test scheduling problem was considered
without checkpoints choice. In other words, we deal with the
problem how to use some information, obtained from the search
algorithm analysis at early stages of the systems design to plan the
failure detection, localization and correction in large size computer
systems during their service. On the other hand, the lack of
enough integrated view on the faults search process may prevent
from understanding these subjects for students studying computer
engineering.

The aim of this paper is to establish and describe possible rela-
tionships between various aspects of diagnostic modeling, extending
our research of [17]. For this aim we classify well-known search
algorithms from the viewpoint of their helpfulness for the problem
of fault diagnostic and localization in complex computer systems.
We determine the algorithms features, which can be useful in pre-
dicting the search cost by analyzing the relationship between those
features, and features of the search space of an instance. As a result,
we describe and ordering some properties of some modifications of
well-known search algorithms using a classification, which is based
on a special notation like that used in the queuing theory.

2. An informal description of faults search process

Let us consider an informal definition of the fault localization
and diagnostic problem as a tuple 〈S, F, P,Q〉, where S is a descrip-
tion of target system (which should be developed) on a given step of
design process (the level of system representation hierarchy, e. g.,
architectural description, or component-based representation), F is
a set of possible faults in the system to be manufactured (“an object
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of searching”, in fact), P is a plan (“strategy”) of possible faults
search in the design during its functioning (actual or potential, in
a working or in a testing modes), Q is a quality criterion (cost, time,
accuracy, etc). The aim of this problem solution is to find a strategy
of the faults localization at a given level of design hierarchy, and to
estimate (predict) the cost of the fault localization activity as a part
of the system service.

Let us call a detailed description of all considerable aspects of
fault diagnostic process as a “general fault diagnostic model”, MFD,
which has to expose information about the system structure that is
useful to fault localization. Majority of algorithms of fault search
in a computer system are based on the following knowledge:

— information about structure of a system diagnosed,

— information about possible faults properties which can affect
the decision making about the faults discovery in the testing
process,

— permissible testing strategy, including all taking into account
resources limitations,

— information about the faults testing conditions, including
possible errors (“noise”, uncertainties) during fault test-
ing/probes.

We represent MFD as a tuple, each field of which belongs to
corresponding domain relating to fault diagnostic and localization
activity. In its part, each of fields may depend on some attributes of
the diagnostic activity. At the current stage of thought, we propose
the following parameterization of the model:

MFD = 〈SDF,SPC,FM,FOM,NHL,SST〉.
Let us consider in detail all these attributes.

SDF
The attribute SDF (“System Diagnostic Features”) describes

technical features of the system which is under consideration with
respect to fault diagnostic. From this point of view, the systems
can be either fitted to active probing (e. g., ping or trace route
command, an e-mail message, or a Web-page access request) or to
passive testing. The major difference [4] is that we use an active
probing approach versus a “passive” analysis of symptoms. So, we
can consider three types of diagnostic systems:

— PFA is the abbreviation of “passive free access” to all struc-
tural elements (modules, components) of the system to test
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them. In general, we may consider as an “element” a module
of software, a module of hardware, nodes of a telecommuni-
cation networks,

— PFAC is the abbreviation of “passive free access to some set
of checkpoints”, when any decisions about state of any inner
module should be made only on the base of the state of a set
of the checkpoints.

— AP is an active probing.

Thus, SDF can take symbolic values SDF = PFA, or
SDF = PFAC, or SDF = AP.

SPC
The attribute SPC (“search precedence constraints”) deals with

a structure of a search plan, which is determined considerably by
the precedence constraints. For example, if we diagnose a D-flip-
flop based structure, all test data must follow the “Set” or Reset”
signals.

The precedence relation constraints can be represented [7] by
a directed precedence graph G = (S,R), where the nodes in S
correspond to the tests/probes (which, in fact, are considered in [7]
as some “jobs” of the schedule theory), and an arc (i; j) ∈ R
corresponds to the precedence constraint, denoted i ≤ j, that job i
must precede job j. Thus, SPC may take values “0” or “1”, thereby
SPC = 0 if there are no any precedence constraints in a search
plan considered. In fact, SPC = 0 means that modules are inspected
sequentially, whereas in other cases, for example, a number of
modules can be expected simultaneously.

Note, that the precedence constraints can be used for adaptive
tests building that are automatically tailored to a given level of
a target system design [9].

FM
The attribute FM (“Fault model”) corresponds to a formal

description of causes of errors which is considered as a discrepancy
between an observed (or measured) value in a given place of the
system and a true, specified, theoretically-expected correct value.
There exist different ways to classify possible faults in computer
systems. For example, the faults may be classified according to
their duration time as: (1) permanent, (2) intermittent, and (3)
transient. We will consider only permanents faults, as the current
theory of transient faults search has still not taken shape [10]. In
this case, the only explicit characteristic of the fault model, having
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an impact on the search process complexity is the supposed number
of possible faults in a specimen of the target system, that is either
single (S) or multiple (M). So, the attribute FM may take the
symbolic values S or M.

FOM
The attribute FOM (“Fault observation Model”) describes dif-

ferent possible ways of a fault observation. Usually faults are not
directly observable and faults diagnosis is the process of locating
the faults based on current observations (symptoms) and possibly
further observations. The following fault detection conditions are
considerable: Perf, that is “noise-free”[4] (or perfect) observation,
and Imp, that is “noisy” (“imperfect”) [15]. In Perf any module
recognized as a faulty one has its fault actually, and the module
is fault–free actually if it is recognized as a fault free. In general,
the Imp observations error may belong to both types: GF-error that
is “good → fail”, and FG that is “fail → good” for another case
of erroneous inspection of the modules. They can be both because
of erroneous of modules inspection and uncertainty concerning the
faults localization through symptoms observed. For example, the
fail → good error is mostly a result of not 100%-fault coverage.

So, the FOM attribute may take the symbolic values
FOM = Perf, or FOM = Imp.

NHL
The attribute NHL (“Number of hierarchy levels”) characterizes

a hierarchy of the fault localization process by the number of
hierarchy levels L, where L is an integer value. It is possible to
define several levels of hierarchy of the faults search problem as
“level 1”, . . . ,“level n” (e. g., from a subsystem to a small system’s
component, each of them can be a faulty with a fault model
depending on the level). For example, in [7] two levels of sequential
search for fault detection and diagnosis are considered, thereby each
of level corresponding to a phase of the search process. The fist
phase deals with its domain for evidence of anomalous behavior. If
evidence of such behavior is detected in a sub-domain, the second
phase starts in which the target system element(s) in the sub-
domain are tested to isolate the specific fault.

SST
SST (“search stopping criterion”) may take the following values:

— FFD — up to the first fault detection,

— AFD — up to all fault detection,
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Tab l e 1
The attributes of the fault diagnostic model

Attr.
Range

of values
Sense of values

Destination
of attribute

SDF PFAC,
PFA, AP

PFAC means passive free access to
some points, PFA is passive free
access to all modules, AP is active
one

System diagnostic
features

SPC 0, 1 0, if the modules are inspected
sequentially, precedence constraints in
a search plan considered, 1 otherwise

Search precedence
constraints

FM S, M S is a single fault model, M is
a multiple one

Fault model

FOM Perf, Imp “Perf” means perfect (noise-free)
observation,
Imp is imperfect (noisy) observations

Fault observation
model

NHL Any
integer

The number of defined hierarchy
levels for a given faults search
problem

Number
of hierarchy levels

SST FFD,
AFD, RS

FFD means a search up to the first
fault detection, AFD means a search
up to all fault detection, RS means up
to a threshold value of resources.

Search stopping
criterion

— RS — up to a threshold value of resources (e. g., number of
steps, time restriction).

All considered attributes are listed in the Table 1.
Note, that among the attributes of the general diagnostic model

also some attributes of “Cost model” should be used, that is a cost
value that determines an optimal order in which the components
should be tested. It may be a deterministic or random. Certainly,
the type of a cost function (or “loss function” [11, 12, 13]) also
affects the optimal ordering, but this influence takes place rather
on a quantitative characteristic of the problem solving than on the
structure of search model (Section 4). However, because of the
restricted place, we will not consider models with the random cost
functions [7] in this paper.

3. Search algorithm classification

There are many ways to classify fault localization algorithms,
but the main thing is that possible algorithms with some useful
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features should be chosen from the classes. We can use Classifica-
tion of Queuing models as a pattern for our classification.

3.1. Kendall Classification of Queuing Systems. Queuing
Theory (QT) is a collection of mathematical models of various
queuing systems that take as inputs parameters of the above
elements and that provide quantitative parameters describing the
system performance.

The Kendall classification of queuing systems [18] exists in
several modifications. The most comprehensive classification uses
6 symbols:

A/B/s/q/c/p

where:

A is the arrival pattern (distribution of intervals between ar-
rivals).

B is the service pattern (distribution of service duration).

s is the number of servers.

q is the queuing discipline (FIFO, LIFO, . . .). Omitted for FIFO
or if not specified.

c is the system capacity. Omitted for unlimited queues.

p is the population size (number of possible customers). Omitted
for open systems.

These symbols are used for arrival and service patterns:

M is the Poisson (Markovian) process with exponential distri-
bution of intervals or service duration respectively.

Em is the Erlang distribution of intervals or service duration.

D is the symbol for deterministic (known) arrivals and constant
service duration.

G is a general (any) distribution.

GI is a general (any) distribution with independent random
values.

Examples:

D/M/1 = Deterministic (known) input, one exponential server,
one unlimited FIFO or unspecified queue 〈test sequence〉,
unlimited customer population.

M/G/3/20 = Poisson input, three servers with any distribu-
tion, maximum number of customers 20, unlimited customer
population.
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D/M/1/LIFO/10/50 = Deterministic arrivals, one exponential
server, queue is a stack of the maximum size 9, total number
of customers 50.

Each sequence of symbols mentioned above represents some
applied features of a specific system classified. Let us consider
a possibility to extend this approach to classification of search
algorithms used in the fault management.

3.2. QT-like notation for search algorithms classification.
Following this notation, we may suggest to describe and present
different fault search problems from the area of computer system
diagnosis by using a 5-attrubute notation (α |β | γ | δ | ε) in more
economical form.

Tab l e 2
Search algorithms classification symbols

Attr.
Notation
and values

Meaning Purpose

α Active/Passive
probing

(see above) System type of the
probing

β Fault model:
s, m, b, p, i, t

(see above) Type of the failure

γ Character of
input
information

(see above) Type of the
observed data

δ Type of
inspections:
perf/imperf;
prec

perf — perfect, imperf —
imperfect;
prec — there are precedence
relations between tests

Type of inspections

ε Search
scenario:
Be, M, Ba, P,
h; . . .

Be-Bernoulli, M-Markov,
Ba-Bayes,
P-Poincarre, h-hierarchical, etc.;
Min-loss, Min-cost,
Max-reward, etc.

Type of the search
scenario and criteria

In what follows, we will consider two models:

(α |β | γ | δ | ε) = (PP | s | pr | imperf Be,Min-cost),

and
(PP | s | pr | imperf |,M,Max-reward).

Fast real-time algorithms for the optimal search for the hidden
faults in computer systems are developed [12].
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They are based on the following a priori information, obtained
in advance using expert’s estimations:

— The probability that the ith specific module is failed,

— The probability (risk) of an unsuccessful search (“over-
looking”),

— The expected cost and time of search trials for each individ-
ual module.

The search procedure uses the concept of the dynamic effec-
tiveness of each trial, which is strictly defined in this paper and
depends on time, cost and risk characteristics of the module, as
well as on the search stage.

The necessary and sufficient conditions for the search optimality
are found which claim that the linear, exponential and logarithm
utility functions, and only these functions, guarantee that the local
real-time search procedure provides the global optimum.

Model 1. Min-Cost Search: Costs depending on searching time
Consider collection K of |K| = N independent stochastically

failing modules and assume that K contains only one failed module
which we are to find with a minimum cost.

Assume that the cost is accumulated from the moment the
search starts till the failed module is discovered and the failure
is eliminated. Assume that a series of sequential tests must be
performed for different modules, and the goal of the search is
to minimize the expected cost of the search before the failure is
localized and eliminated. We assume that the search is imperfect,
which means that there is a risk that the test does not extract the
failed module when it is examined, that leads to the situation when
the same module can be examined several times. A search sequence,
generally speaking, may become infinitely long. We assume that
each module i is characterized by the following parameters:

— Prior probability pi that i is failed;

— Prior probability ai that i will not be extracted, by mistake,
when the search test examines it,

— Expected time ti to inspect module i,

— Cost coefficients:
“cost rate” ci, per unit time (for linear costs),
“maximal acceptable” Ci (for exponentially growing costs).

The optimal search strategy depends on the cost functions and
the search scenario.
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In Model 1 we consider the following scenario:

• The modules are inspected sequentially;

• For any specified search sequence and any location of the
failed element, the outcomes of the searches are independent.

• The search is finished when the failed module is found and
the failure is eliminated.

Each sequential inspection strategy specifies an infinite se-
quence s of inspected modules:

s = (s[1], s[2], . . . , s[n], . . .)

which states that at the nth step of s the module s[n] is inspected.
For any s we introduce the following notation:

• P [n, s]: probability that the failure is detected at the nth step
of s;

• t[d, s]: time elapsed till the moment when the module s[d] is
examined at step d of sequence s;

• c[d, s]: the cost rate assigned to module s[d] in s;

• C[d, s]: the maximal possible cost assigned to module s[d] in
s.

Then the time T [n, s] spent to detect and eliminate the failure
at the nth step of s will be:

T [n, s] =
∑

d=1,...,n

t[d, s].

• The linear cost for nth step of s will be: c[n, s]T [n, s];

• The exponentially growing cost will be:

C[n, s](1− exp (−dT [n, s])).

Then the total expected linear cost of sequence s will be:

L(s) =
∑

d=1,...,inf

P [n, s]c[n, s]T [n, s].

• The expected exponential costs will be:

E(s) =
∑

d=1,...,inf

P [n, s]C[n, s][1− exp (−dT [n, s])].

Let us define parameters Qij and Rij :

Qij = pi(ai)
(j−1)(1− ai);
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Rij = CiQij exp (−dti)]/[1− exp ((−dti)].

The o rem 1. Let the values of ratio cijQij/ti for all i and j
be arranged in non-increasing order, and let s∗ be such that if the
ratio cijQij/ti is the nth largest one in the ordering then the nth
step of s∗ is the jth search of module i. Then s∗ is optimal.

The o rem 2. Let the values of ratio Rij for all i and j be
arranged in non-increasing order, and let s∗ be such that if the
ratio Rij is the nth largest one in the ordering then the nth step
of s∗ is the jth search of module i. Then s∗ is optimal.

Parameters cijQij/ti and Rij are called the dynamic effective-
ness, or attractiveness of the module i at its jth search.

Example: Q11 < Q21 < Q31 < Q12 < Q13 < Q14.

Model 2. Max-Reward Search with Learning:
The faster failure is detected the larger reward.
We assume that each module i is characterized by the following

parameters:

— Prior probability pi that this module i is failed;

— Prior probability ai that i will not be extracted, by mistake,
when the search test examines it,

— Expected time ti to inspect i,

— Reward parameters:
a reward Wi offered at time 0 for finding the needed info,
“a discount factor” di, showing the decrease of reward over
time,
“a learning factor” bi, 0 < bi < 1, (see Sweat 1979) de-
scribing a relative increase of the probability pi of find-
ing the needed info: the latter probability contains factor∏

i=1,...,N

(bi)u(i), where u(i) is the number of times module i

has been inspected before.

The optimal search strategy will depend on the reward functions
and the search scenario.

In this model we consider the following scenario:

• The modules are inspected sequentially;

• For any specified search sequence and any location of the
failure, the outcomes of the searches are dependent on the
previous searches;
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• The search is finished when the failure is localized and
eliminated;

• Each sequential inspection strategy specifies an infinite se-
quence s of modules:

s = (s[1], s[2], . . . , s[n], . . .)

which states at the nth step of s the module s[n] is inspected.

For any s we introduce the following notation:

• W [n, s]: the reward offered at time 0 for detecting the failure
at the nth step of s;

• t[n, s]: time elapsed till the moment when module s[n] is
examined at step n of sequence s;

• P [n, s]: the probability of detecting the failure at the nth step
of sequence s (if no discount is involved).

Then the time T [n, s] spent to detect and localize the failure at
the nth step of s will be, as before:

T [n, s] =
∑

d=1,...,n

t[d, s].

The reward discounted before the failure is localized will be:

W [n, s] exp (−dT [n, s]),

while the improved probability of detecting the failure at the nth
step of s will be:

P [n, s] =
∏

i=1,...,N

(bi)
u(i,n,s).

Then the total expected discounted reward when using the
sequence s will be:

Rew (s) =
∑

n=1,...,inf

P [n, s]
∏

i=1,...,N

(bi)
u(i,n,s)D(n, s) exp (−dT (n, s).

The following generalization of the Sweat Rule [12] takes place:

Theo rem 3. Let the values of ratio is

Rij = biWiQij exp (−dti)/[1− bi exp ((−dti)]
for all i and j be arranged in non-increasing order, and let s∗ be
such that if the ratio Rij is the nth largest one in the ordering
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then the nth step of s∗ is the jth search of module i. Then s∗ is
optimal.

Optimality conditions for Min-Loss Search
Consider a more general situation when the search times de-

pends on the “history” of the search: ti = ti(n, s). Let f be an
arbitrary loss functions of the total search time

T [n, s] =
∑

d=1,...,n

t[d, s]

at step n, and F (s) be the corresponding total expected losses:

F (s) =
∑

d=1,...,inf

P [n, s]c[n, s]f(T [n, s]).

D e f i n i t i o n 1. Let IF = IFi(k) be a real-valued function
depending on the index i, the search step k and the current input
data characterizing the module i; this function is called the index
function, or the fitness function. A local search policy is called an
index policy generated by IF = IFi(k) if at each search step one
inspects a module with currently greatest value Ii, among all i.

De f i n i t i on 2. An objective function F (S) permits an index
policy if there exists a single-index fitness function IFi = IFi(k)
such that for all values of N and any input data the index policy
generated by IFi = IFi(k), is optimal.

P rop o s i t i on 1. Let fi(t) be strictly increasing and suffi-
ciently smooth (there exists the 3rd derivative) function on R+.
The expected loss function F (s) permits an index policy if and
only if (i) fi(t) = ai(t) + bi, or (ii) fi(t) = ai exp (kt) + bi.

P rop o s i t i o n 2. Let fi(t) be strictly increasing and suffi-
ciently smooth (there exists the 3rd derivative) function on R+.
The expected reward function R(s) permits an index policy if
and only if (i) fi(t) = ait) + bi, or (ii) fi(t) = ai log (kt) + bi, for
i = 1, . . . ,N .

If we compare the properties of these search algorithms with
the conceptual model of fault diagnostic described in the Sec-
tion 2, we can see that classes (PP | s | pr | imperf Be,Min-cost)
and (PP | s | pr | imperf |,M,Max-reward) cover very wide part of
the area of problems concerning the complex computer systems
maintenance [1, 8, 16, 17].
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4. Conclusion and future work

The considered classification allows us to define various classes
of search models, which differ in their assumption about character
of search and possible failures during search (e. g., whether an algo-
rithm is “noisy-free” or “noisy” from the point of view of the objects
goodness identification). A consideration of relationship between the
classes can show how we should choose (or change) a search model
for a given conditions. It may be useful to manage the process of
diagnostic planning. For example, we can see that the properties
of search algorithms (attributes FM, FOM, Section 2) affect the
parameters of fault search model rather then other fault charac-
teristics. Further, the relationships allow us, for example, establish
a hierarchy of both search conceptual models and the search algo-
rithms, where the hierarchy levels may correspond to the degree of
generality of the models (that is the more complex diagnostic figure
(fault search conditions, testing scenario, etc. the higher level of
the search model), or, the more aspects of the search strategy are
taken into account in a search model, the higher its level).

Such characterization may be very useful in teaching for large
computer system (including networks) maintenance and service,
since allow to co-ordinate in a clear manner technical and mathe-
matical issues. Besides, such classification could be used in the field
of fault localization and diagnosis by expert systems [14], where
rule-based representations of their knowledge base are in use. Using
the above approach, it is possible to perform experiments and solve
practical classes of search problems with uncertain data and under
different working scenarios.

The following unresolved currently issues are very topical for
this research area:

1. To extend the model: when costs depend in time, the learning
decreases the overlooking probability;

2. When K contains several failed modules;

3. When search at each step considers several modules (and
their number may vary in time).
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We investigate relations between consistency of statistical
criteria sequences in finite probability spaces and asymptotic com-
plexity of test calculations. It is proved that for every consistent
test sequence it is possible to construct another consistent se-
quence for which complexity of calculations of membership func-
tions of new criteria critical sets can be made asymptotically small
in comparison with similar complexity for initial criteria. However
such simplification appears to be fictitious as a matter of fact.
To prevent fictitious simplification of calculations of membership
functions of critical sets in a sequence of criteria it is necessary
to set additional restrictions on classes of considered criteria. It is
shown, that in case of such natural restrictions any simplification
of calculations can lead to a failure of a consistency of criteria
sequence.

Estimations of efficiency of two-level criteria are resulted,
when simple but not consistent in the given class of alternatives
criteria work at first, and only in case of nonacceptance of a hy-
pothesis hard computable but consistent criteria are applied.

Let X = {x1, . . . ,xm} be a finite set, X∞ be a set of infinite se-
quences, in which elements belong to X, A be σ-algebra, generated
by cylindrical sets, P0 be a probability measure on the measurable
space (X∞,A). Furthermore, there is a family of probability mea-
sures Pϑ, ϑ ∈ Θ, on the same measurable space.
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Consider projections of the introduced probability measures onto
the first n coordinates of sequences from X∞ and denote them
accordingly P0,n and Pϑ,n. Concerning the given measures for
every n we define a problem of testing of a statistical hypothesis
H0,n : P0,n against complex alternative H1,n : {Pϑ,n, ϑ ∈ Θ}. A
criterion of significance value α is described by a critical set
Sn, P0,n(Sn) ≤ α and a power of criterion Wn(ϑ) = Pϑ,n(Sn).
The sequence of statistical criteria with critical sets Sn is named
consistent [4], if for all α > 0 the power of criteria Wn(ϑ) → 1 for
every ϑ ∈ Θ.

A statistical criterion can be described by a membership func-
tion of the critical set of a criterion. In discrete mathematics we
can speak about complexity of a membership function of the given
set. Thus, it is possible to speak about complexity of calculation
of a statistical criterion. In the considered above model we have
a sequence of statistical criteria for every n and n → ∞. That is
why we say about asymptotic estimations of complexity of a criteria
sequence.

A relation between asymptotic statistical properties of a criteria
sequence and asymptotic complexity of their calculations was rarely
investigated in the discrete mathematics. It is natural to consider
properties of consistency of a criteria sequence and asymptotic
complexity of this sequence of criteria. For example, in the work [2]
it was shown, that the problem of detection of the chosen set of
nodes in a random graph had a consistent decision when power of
the given set of nodes grows as C lnn, where n is the number of
nodes of the random graph. However the consistent sequence of
criteria has asymptotically high complexity. If we consider simply
computable criteria the corresponding border of detectability of the
chosen set becomes equal C

√
n .

We investigate the next questions. Can any reduction in com-
plexity lead to loss of a consistency? Can we get reduction in
complexity of a sequence of criteria and preservation of consistency?

We define a one-dot distribution as a singular distribu-
tion of probabilities concentrated in one point of space X∞.
Let P0 be a one-dot distribution concentrated in the point
ω = (x1, x1, . . . ,x1, . . .), all coordinates of which are equal
to x1. As alternatives we consider a set of one-dot distributions
{Pϑ, ϑ ∈ X∞, ϑ 6= ω}. As the basic operation for an estimation of
complexity we shall take comparison of the next sign of observed
sequence with x1. For every n the projection P0,n is a singular

2
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distribution on Xn, concentrated in the point ωn, where ωn is a
vector of length n with all coordinates are equal to x1. Each of
alternatives Pϑ,n is also a singular distribution, concentrated in
the point ϑn. As the critical set for testing of the hypothesis H0,n

against complex alternatives H1,n we put Sn = Xn \ {ωn}. For
this criterion P0,n(Sn) = 0 and Pϑ,n(Sn) = 1 for any ϑ, for which
projection ϑn 6= ωn. Complexity of calculation of the given criterion
does not exceed n for all points of space Xn.

Thus defined sequence of criteria is consistent. Really

lim
n→∞

P0,n(Sn) = 0,

and for everyone ϑ ∈ X∞, ϑ 6= ω there exists n such, that ϑn 6= ωn.
Then, since this n, the power Wn(ϑ) = 1.

Complexity of calculation of any other criterion can be lowered
only because we shall not compare each coordinate of observed
vector from Xn with unique admissible value x1. Then if complexity
of a sequence of statistical criteria is equal o(n), it means that
the membership function of the critical set does not depend on
the significant part of coordinates. Let’s assume that the sequence
of sets of skipped coordinates is monotone nondecreasing with
growth n. Then the sequence of critical sets Dn for such sequence
of criteria will possess following property

lim
n→∞

[(Xn \Dn) ×X∞] ⊃ {ω}.

That is for all n cylindrical sets, generated by critical sets of
criteria, will not possess at least one more sequence ϑ 6= ω. It means
that for this sequence ϑ power of the test does not tend to 1.

Thus we have proved, that reduction in complexity of criterion
leads to loss of property of consistency for corresponding sequence
of criteria.

We’ll show that for an arbitrary consistent sequence of criteria
there is another consistent sequence of criteria against the same
alternatives with much more lower complexity.

Theo rem 1. For an arbitrary consistent sequence of criteria
for testing of H0,n against H1,n with critical sets Sn, n = 1, 2, . . .,
and complexity of their membership functions g(Sn), where
g(Sn) → ∞ if n → ∞, there exists a consistent sequence of
criteria for testing of H0,n against H1,n, complexity of which is
asymptotically small in comparison with complexity of criteria of
reference.
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Proo f. By the condition of consistency ∀α ∈ (0; 1]

P0,n(Sn) ≤ α

and for every ϑ ∈ Θ

lim
n→∞

Pϑ,n(Sn) = 1.

Then
P0(Sn ×X∞) ≤ α

and for any r = 1, 2, . . . ,

P0(Sn ×Xr ×X∞) ≤ α, P0,n+r(Sn ×Xr) ≤ α.

Let k = k(n) = o(n), k(n) → ∞ if n→ ∞ and g(Sk(n)) = o(g(Sn)).
Let’s consider criteria with a sequence of critical sets Dn,
n = 1, 2, . . . Here for k(n) ≥ n

Dn = Sk(n),

and for k(n) < n
Dn = Sk(n) ×Xn−k(n).

The constructed sequence of criteria is consistent, because

P0,n(Dn) = P0(Dn ×X∞) = P0((Sk(n) ×Xn−k(n)) ×X∞)

= P0, k(n)(Sk(n)) ≤ α,

Pϑ,n(Dn) = Pϑ(Dn ×X∞) = Pϑ((Sk(n) ×Xn−k(n)) ×X∞)

= Pϑ, k(n)(Sk(n)) −→n→∞ 1.

Complexities of these criteria are equal to g(Sk(n)) because the crit-
ical sets do not depend on n− k(n) last coordinates. The theorem
is proved.

The considered above example and the proved theorem seem
to be contradictory. In the example we demanded monotony of
sequence of sets of the unseen coordinates, and in the theorem
there is no this condition. We shall name this contradiction as the
conflict of “laziness”. Really, by consideration of infinite sequence
of decisions the observer can perform the work on a step n as
though he is on a step k < n and he does not look through n − k
last coordinates of observed vector. In view of a consistency he
knows, that sooner or later he will make all the work with the

2*
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same asymptotic result. Complexity connected with “laziness” does
not reflect real complexity of the sequence of criteria.

To avoid the conflict it is necessary to demand additional con-
ditions for sequences of criteria. We shall present two examples of
such conditions.

Each critical set Sn can be constructed from the set Sn−1 with
the help of withdrawal of some sequences from the set Sn−1 ×X.
Then the complexity of the criterion g(Sn) which is constructed
with the help of the specified algorithm satisfies to the difference
equation

g(Sn) = g(Sn−1) + f(n),

where f(n) is the complexity of withdrawal of sequences from the
set Sn−1 ×X.

Monotone nonincreasing sequence of the closed cylindrical sets
Sn ×X∞ ⊇ Sn+1 ×X∞, n = 1, 2, . . . corresponds to the sequence
of critical sets Sn, n = 1, 2, . . . ,. Then there is a limit

S =
∞⋂

n=1

(Sn ×X∞)

and the set
A = X∞ \ S

is the open set in Tychonoff product [1, 5].
For the sequence of critical sets Sn, n = 1, 2, . . . , it is possible

to consider, that
lim
n→∞

P0,n(Sn) = 0.

From here it follows, that P0(S) = 0 and P0(A) = 1.
Let’s select a class of alternatives Θ1 ⊆ Θ for which there are

sets A(ϑ), ϑ ∈ Θ1, such that A(ϑ) ∩A = ∅ and Pϑ(A(ϑ)) = 1. For
this class of alternatives the sequence of criteria with critical sets
Sn, n = 1, 2, . . . , is consistent [3].

Calculation of membership function of the critical set Sn can
be replaced with the membership function of the set complement
Xn \ Sn. That is if the observed value does not belong to the set
complement Sn then the observed value belongs to Sn. In some
cases such calculation of membership functions is easier.

Let’s denote Dn = Xn \ Sn, n = 1, 2, . . . Let Dn can be con-
structed from the set Dn−1 × X with the help of withdrawal of
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some sequences and let g(Dn) be a complexity of realization of this
algorithm. Then for some function f(n) we have difference equation

g(Dn) = g(Dn−1) + f(n),

where f(n) characterizes complexity of withdrawal of sequences
from the set Dn−1 ×X. In this case we have monotone nonincreas-
ing sequence of cylindrical sets

Dn ×X∞ ⊇ Dn+1 ×X∞, n = 1, 2, . . .

For the sequence of critical sets Sn, n = 1, 2, . . . , it is possible
to consider, that

lim
n→∞

P0,n(Sn) = 0.

From here it follows, that P0(D) = 1.
The set D is closed in Tychonoff product [1, 5].
We shall select a class of alternatives Θ1 ⊆ Θ for which there

are sets A(ϑ), ϑ ∈ Θ1, such that A(ϑ) ∩D = ∅ and Pϑ(A(ϑ)) = 1.
Against this class of alternatives the sequence of criteria with
critical sets Sn, n = 1, 2, . . . , is consistent [3].

When the critical sets or their sets complement are obtained
as the Cartesian products Sn = Cn of some subset C ⊆ X, then
f(n) = const. In this case complexity g(Sn) is linear function of n.

At the analysis of complexity the following simple theorem is
required to us.

The o r em 2. Let us consider some classes of alternatives
H

(k)
1,n : Pϑ,n, ϑ ∈ Θk, k = 1, 2, . . . ,M , and H1,n : Pϑ,n, ϑ ∈ ⋃M

k=1 Θk.

There are consistent sequences of criteria for testing of H0,n

against each of alternatives H(k)
1,n iff there is a consistent sequence

of criteria for testing of H0,n against H1,n.

P ro o f. Existence of a consistent sequence of criteria for testing

of H0,n against each alternative H
(k)
1,n, k = 1, 2 . . . ,M , means, that

there is a sequence of sets S
(k)
n such, that P0,n(S

(k)
n ) → 0 and for

every ϑ ∈ Θk it is carried out Pϑ,n(S
(k)
n ) → 1. We shall denote

Sn =
⋃M
k=1 S

(k)
n . Then

P0,n(Sn) ≤
M∑

k=1

P0,n(S
(k)
n ).
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Thus, the sequence of criteria with critical sets Sn satisfy the
condition

P0,n(Sn) −→n→∞ 0.

For ϑ ∈ Θk it is carried out

Pϑ,n(Sn) ≥ Pϑ,n(S
(k)
n ) −→n→∞ 1.

Let Sn be a sequence of critical sets of consistent sequence
of criteria for testing of H0,n against alternative H1,n. The same

sequence of criteria is consistent for testing of H0,n against H
(k)
1,n,

k = 1, 2, . . . ,M . The theorem is proved.
Let’s consider a special case of application of the theorem 2.

Assume that the sequence of criteria of a significance value
α

2

with critical sets S
(1)
n has asymptotic complexity g(S

(1)
n ), and the

sequence of criteria of a significance value
α

2
with critical sets S

(2)
n

has asymptotic complexity g(S
(2)
n ).

Assume, that g(S
(1)
n ) � g(S

(2)
n ) when n → ∞. At the same

time the first sequence of criteria is consistent only for a set
of alternatives Θ1 ⊂ Θ, and the second sequence of criteria is
consistent for the whole set Θ.

For reduction of complexity we advise the next procedure of
testing of H0,n : P0,n against alternatives H1,n : Pϑ,n, ϑ ∈ Θ.

First we test a hypothesis H0,n with the help of criterion S
(1)
n ,

and in case of its deviation this hypothesis is checked with the help

of criterion S
(2)
n There significance value is α.

Complexity of the constructed procedure is equal to

g = g(S(1)
n ) + g(S(2)

n ) · I(S(1)
n ),

where I(A) is the indicator of event A.
Expectation of the complexity of the constructed procedure in

the measure P0,n is estimated in the following way

E0g ≤ g(S(1)
n ) +

α

2
· g(S(2)

n ).

This formula shows, what the prize we can get, applying simple
criterion at first, and then specifying received decision with the
help of more complex criterion.
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The Bayesian approach for certain tasks of queueing systems
theory and reliability theory is investigated. The method provides
the randomization of system characteristics with regard of a priori
distributions of input parameters. This approach could be used,
for instance, for calculating average values and for construction
of confidential intervals applicable for performance and reliability
characteristics of large groups of systems or devices. The results
for certain models of input flow and service time parameters are
presented.

1. Introduction and main assumptions

Theory of queueing systems is a well-developed mathematical
discipline. Based on it a substantial number of positive R&D results
have been generated. The results obtained in studying queueing
systems and networks proved to be of significant profundity and
importance from mathematical and practical points of view. In fact
queueing systems and networks are able to model a broad class of
real systems, info-telecommunication systems and networks being

1 This work was supported by the Russian Foundation for Basic Re-
search (grant 08-07-00152).

This work was presented at III International Workshop “Applied Prob-
lems of Probability Theory and Mathematical Statistics related to model-
ing of information systems” (Aosta, Italy, January 2008).
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in the first place. In order to reflect real processes in a more
adequate way, the present development of queueing theory is being
carried out mostly with a focus on studying more complex service
disciplines, input flows and service time distributions with more
and more complicated probabilistic characteristics.

One of the directions of generalization of problem formulations
is the complication of probabilistic structure of one or more queue-
ing systems input parameters. Instead of considering traditional
input flows, the researchers study Cox flows, self-similar flows,
Markovian and semi-Markovian flows, etc. Similar generalizations
are made regarding service times distributions. To some extent,
these generalizations can be interpreted as the randomization result
of these or those parameters of more “simple” flows and service
times distributions. Thus, Cox process is obtained as a result of
special randomization of Poisson flow intensity, etc.

All these generalized modern formulations assume that stochas-
tic method of randomization “affects” the parameters of a system
precisely during its functioning, meaning that we primarily know
the kind of the system we are “dealing with”, even when the
system is rather complicated and then we study characteristics of
this particular “primarily fixed” system. However, in real life often
the system under study is specified in some sense vaguely, or
inaccurately. For example, even when we deal with the simplest
systems of M|G|1 type, we may not know a priori the input flow

parameter λ and the service parameters µ and σ2. Such situations
can occur studying the whole class of queueing systems when the
only known characteristics are the input flow types the service
distribution and the service discipline, but at the same time the
concrete parameters of these flows and distributions, generally
speaking, vary for different queueing systems of a given class. A
researcher does not know a priori the queueing system belonging to
the given class he is dealing with. For example, such situation can
take place testing a series of uniformed commutation or transmis-
sion devices manufactured by the same company. Spread in some
of their performances can be explained by natural technological
deviations during manufacturing process. In this particular case,
since the unknown characteristics are the “initial” parameters of
the flows and service times, a natural thing could be the use of
a randomized approach according to whch the values λ, µ and σ2

become the elements of a probabilistic space, but in general, one can
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speak about probabilistic space with uniformed queueing systems
being its elements. In this situation it is quite natural that the
calculated characteristics of such randomized queueing system are
randomization of similar characteristics of “usual” queueing system
of similar type taking into account a priori distribution of queueing
system input parameters.

So, in the same example concerning a M|G|1 queueing system
there arise the tasks of “common” characteristics randomization of
such systems with regard for a priori input parameters distribu-
tions. In other words, we can make assumption about exponential,
uniform or any other distribution of one or several values λ, µ
or σ2 (that become random variables under such approach), about
their dependence or independence, etc. The obtained results could
be used, for instance, to calculate “in general” average values and
to construct confidential intervals applicable for these or those
characteristics of the queueing system class under consideration.
Naturally, such approach queueing models development can be
called Bayesian and it was formulated for the first time in [1].

The Bayesian approach can be used also in problems of reliabil-
ity estimation. As it is known (see [2] ), the availability factor of
the restorable device in a stationary mode can be calculated using
the formula

k =
λ−1

λ−1 + µ−1
=

µ

λ+ µ
,

where λ−1 is the average operating time between failures, and µ−1

is the average restoration time. If we accept the hypothesis stated
above that the device under consideration is randomly selected from
some set of similar devices whose average reliability characteristics
vary, then according to the reasonings presented above, values λ
and µ could be considered as random. Hence, under these assump-
tion the availability factor k is random, too, and its distribution
depends on distributions of values λ, µ. The obtained results in
this field could be used, for instance, for calculating “in general”
average values and for the construction of confidential intervals for
reliability characteristics of the overall set of investigated devices.

2. The Bayesian approach to queuing systems

In order to explain the essence of the task formulation we
present the following example. Let us consider a situation when
an observer deals with rather large series of queueing systems
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M|M|1|0 that differ only in service distribution parameter. In par-
ticular, these can be certain devices, commutators, routers or any
other servicing tools. It is known in advance that their functioning
can be modelled by a system belonging to the above-described type.,
i.e these systems have identical service discipline, types of input
flow and of service times distribution.

This example assumes that the input flow characteristics are
also identical for all the systems of a given series; only numerical
characteristics of service are different (i. e. the parameters of expo-
nential distribution).

Dispersion in characteristics of service is due to technological
(design) reasons and the main aspect of the problem statement is
the fact that the researcher does not know what the real value of
service parameter of the system belonging to a given series under
study that was selected by him at random. The only thing that he
knows is “a priori” distribution of this parameter (since the series
is supposed to be large, one can consider stochastic phenomena in
relation with that series and introduce probabilistic distributions).
The researcher is interested in finding out service characteristics
for a series as a whole (or characteristics of the system “selected at
random”). Obviously, along with traditional factors of stochasticity
that occur in queueing systems (stochasticity of input flow and
service processes), there appears one more factor of stochasticity
related to randomized selection of the system under study.

Let us assume that the service parameter µ of the systems
under study can take only two values: µ1 and µ2 with probability
p1 and p2, respectively. In “physical terms” it means that among
the system series under study (routers, machine tools, etc.) only
two “varieties” of servicing devices occur. Devices belonging to the
first variety provide the service with parameters µ1, while devices
of the second variety provide the service with parameter µ2. Then
the loading factor of the system “selected at random” becomes the
random variable that takes the values λ/µ1 with probability p1 and
λ/µ2 with probability p2. The steady-state probability of blocking
the “selected” system due to the interference of the random factor of
selecting a concrete system becomes “random” itself and takes the
values λ/(λ + µ1) with probability p1 (it is the probability that a
system belonging to the first variety has “fallen into the researcher’s
hands”) and λ/(λ+ µ2)with probability p2 (meaning that a system
of the second variety “has fallen into the researcher’s hands”). It is



44 A. Kudryavtsev, S. Shorgin, V. Shorgin, V. Chentsov

natural that the “averaged” blocking probability of such “Bayesian”
queueing system is equal to p1λ/(λ+ µ1) + p2λ/(λ+ µ2).

As we can see, there is no need to use the methods of queue-
ing theory for studying the Bayesian queueing systems. Bayesian
system is “randomization” of a certain “ordinary” queueing system,
meaning that the Bayesian queueing system characteristics can be
calculated by means of randomizing subsequent averaging (by a pri-
ori distribution of the parameter or parameters) of the “ordinary”
queueing system characteristics that have been calculated earlier
by using the methods of queueing theory. In other words, the
mathematical part of the job comes to this particular randomization
and averaging. At the same time, it is an expedient from both
technological and conceptual points of view to accomplish random-
ization of stationary characteristics of “ordinary” queueing systems
and obtain the steady-state characteristics of Bayesian queueing
systems.

We would like to point out one more substantial model that can
be described mathematically with the help of Bayesian queueing
system. Let’s assume that a researcher considers not a series of
systems with quantitative parameters that change with the time.
For example, there exists a servicing device, one of its elements
being replaced by another one at the moments that we do not know
beforehand, then being replaced by the third one, etc. Such a system
can be the frontier post at the airport, where an officer on duty
is relieved from time to time at the moments not known by the
observers (passengers). The only things an observer knows are the
probability that he will have “come upon” a certain concrete frontier
officer and an average time of passport checking by each frontier.

Under such approach the system structure and service discipline
do not change with the time while only quantitative parameter of
distribution of service changes (e.g. intensity). The input flow pa-
rameter can change in a similar way. There is no information about
the moment when changes occur. The researcher is aware only of
distribution of the values of “changeable”, random parameters he
“comes across” while examining the system at a “random” moment
of time.

Since it is assumed that the researcher does not have any infor-
mation about the moments of the system “reorganization”, and even
about distribution of these moments, it is impossible to describe
transient processes within such kind of a system. Therefore, it
is possible to carry out analysis (and subsequent randomization)
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of only steady-state distributions of the queueing system under
analysis. In order to give meaning to this problem statement, it is
necessary to make an assumption that the system changes quite
“rarely” so that at each interval of constancy of the parameters,
the queueing system “had time” to reach steady-state condition. Of
course, the results of such analysis will be rough because steady-
state condition, strictly speaking, cannot be reached in real life.

3. Simple models of “Bayesian” queueing systems

Below two more simplest models of “Bayesian” queueing sys-
tems are presented in order to provide further elucidation of specific
character of the problems that emerge under such an approach and
of the obtained obtained results. The results of this chapter were
presented in [3]

3.1. Uniform distribution of λ and µ: loading factor. Let us
consider an arbitrary queueing system with input flow intensity λ
and service intensity µ. The loading of such system is equal to
ρ = λ/µ. As it is generally known, the availability of steady-state
mode of the system under consideration depends on the value ρ
which apperas in many formulae that describe characteristics of dif-
ferent queueing systems. Hence, the study of the value ρ should be
considered within the frames Bayesian theory of queueing systems.

The variety of possible and interesting distributions of variables
λ and µ for their joint applications is rather wide. We consider one
of the simplest but at the same time very common in practice cases
when the values λ and µ are independent and uniformly distributed
on some certain pre-determined segments. Such model is good for
describing situations when some legitimate interval of values have
been assigned for both values λ and µ (or for any of them), but the
real value λ or/and µ can vary within such limits.

Assume that the random variable λ has a uniform distribution
on the segment [aλ, bλ], the random variable µ has a uniform
distribution on [aµ, bµ], with 0 ≤ aλ ≤ bλ, 0 ≤ aµ ≤ bµ.

In this case, the cumulative function of the random variable
ρ = λ/µ distribution can be written down as follows:

P {ρ < x} =
∫ ∫

λ/µ<x

1

bλ − aλ

1

bµ − aµ
dλ dµ.
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Subsequent calculations depend essentially on relation between
the values aλ/aµ and bλ/bµ. Let us suppose for the sake of definite-
ness that aλ/aµ ≤ bλ/bµ. Then:

provided x ≤ aλ/bµ
P {ρ < x} = 0,

provided aλ/bµ ≤ x ≤ aλ/aµ

P {ρ < x} = K
(bµx− aλ)2

2x
,

provided aλ/aµ ≤ x ≤ bλ/bµ

P {ρ < x} = K
(
aµ + bµ

2
x− aλ

)
(bµ − aµ) ,

provided bλ/bµ ≤ x ≤ bλ/aµ

P {ρ < x} = 1−K
(bλ − aµx)

2

2x
,

provided x ≥ bλ/aµ
P {ρ < x} = 1,

when
K =

1

(bµ − aµ) (bλ − aλ)
.

Let us derive the density of random variable ρ:

provided x ≤ aλ/bµ
fρ(x) = 0,

provided aλ/bµ ≤ x ≤ aλ/aµ

fρ(x) = K

(
b2µ
2

− a2λ
2x2

)
,

provided aλ/aµ ≤ x ≤ bλ/bµ

fρ(x) = K

(
b2µ − a2µ

2

)
,

provided bλ/bµ ≤ x ≤ bλ/aµ

fρ(x) = K

(
b2λ
2x2

− a2µ
2

)
,

provided x ≥ bλ/aµ
fρ(x) = 0.



Bayesian queueing and reliability models 47

Through accomplished elementary calculations, we derive the
average value and the second moment of random variable ρ, that
are respectively equal to:

Eρ =
bλ + aλ

2(bµ − aµ)
ln
bµ
aµ

,

Eρ2 =
a2λ + aλbλ + b2λ

3aµbµ
.

It is evident that if bλ − aλ → 0 and bµ − aµ → 0, i. e. contract-
ing the range of the random variable λ to some fixed point λ0, and
the range of the random variable µ to some fixed point µ0, the value
Eρ, as it should be, tends to λ0/µ0, and the value Еρ2 tends to

λ20/µ
2
0.

Moreover, we note that the dependence of the average value of
ρ on distribution λ is reduced to dependence on the mathematical
expectation λ. At the same time, dependence of Eρ on parameters
of distribution µ has a more complex look.

In the case aλ/aµ ≥ bλ/bµ, the formulae for calculating the
сummulative and density functions of the random variable ρ are
similar. The mathematical expectation and the second moment of
the random variable ρ in this particular case coincide with the
values that have been calculated previously.

Based on the obtained results, it would be easy to calculate
other necessary characteristics of value ρ.

It is worthwhile to observe that the examined model allows to
study an important situation when λ < µ has the probability 1. In
this case ρ < 1, which is the condition of ergodicity of the systems
having one servicing device. By virtue of postulated independence
of random values λ and µ, and the condition for λ < µ is satisfied
only if the condition 0 ≤ aλ ≤ bλ ≤ aµ ≤ bµ holds.

3.2. Exponential λ and µ distribution: loading factor, prob-
ability of losses in the system M|M|1|0 and avalaibility factor.
Let us consider another probabilistic model for the values λ and
µ. In a situation when there is no a priori information about their
mean values, it we can consider as a “first approximation” a model
where λ and µ are exponentially distributed with known averages,
1/l and 1/m respecticely). Assumption about λ and µ has been
retained.

So, the cummulative function of the random variable λ distri-
bution is equal to 1 − exp (−lu) and the cummulative function of
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the random variable µ distribution is equal to 1 − exp (−mu). As
we did in the previous section, le us first of all consider ρ = λ/µ.
Obviously, for x ≥ 0 we get

P {ρ < x} = P {λ < µx} =

∞∫

0

P {λ < xy} dP {µ < y}

=

∞∫

0

[1− exp (−lxy)]m exp (−my) dy =
lx

m+ lx
.

Hence, it follows in particular that the random variable ρ in
this case does not have any moments of the first and higher
orders, as distinct from the situation described in the previous
section. However, some other characteristics of Bayesian queueing
systems, depending on random variable ρ = λ/µ, can have finite
moments. Let us consider, for example, the queueing system of
M|M|1|0 type. The probability that a claim has been received by
the system will not be lost in a steady-state mode is equal to
π = 1/ (1 + ρ) according to Erlangian formulae. As for the Bayesian
problem statement, this probability becomes “random” by itself. Let
us consider the distribution of the random variable π under the
conditions of the model under study.

Provided 0 ≤ y ≤ 1

P {π < y} = P {ρ > (1− y)/y} =
my

my + l(1− y)

Correspondingly, the random variable π density is equal to
ml

[my + l(1− y)]2
, while the averaged probability that the call is not

lost looks as follows

Eπ =

1∫

0

mly

[my + l(1− y)]2
dy =

ml

(m− l)2

(
ln
m

l
+

l

m
− 1

)
.

It would be easy to calculate also the second moment of the
random variable π as well as its other characteristics. Let us note
hat for m = l

Eπ = 1/2.
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The value
π = 1/ (1 + ρ) =

µ

λ+ µ

is equal to value of the avalaibility factor k (see above). Hence, the
distribution of the random avalaibility factor in case of exponentially
distributed λ and µ is presented above as the distribution of random
value π.

4. Erlang model for the parameter of service

In this chapter, the results will be presented for Erlang model
of service time distribution.

Let us consider the system M|M|1|0 again. Let the parameter
of input flow λ be degenerated, and the parameter of service µ has
Erlang distribution with parameters n and α. First of all we will
obtain the distribution functions and densities of random variables

ρ =
λ

µ
and k = π =

1

1 + ρ
.

Let us find the distribution function Fρ(x) of the random vari-
able ρ. We have

Fρ(x) = 1− P
(
µ <

λ

x

)
= 1−

λ/x∫

0

tn−1αne−αt

(n− 1)!
dt

= 1− 1

(n− 1)!

αλ/x∫

0

zn−1e−z dz = e
−αλ

x

n−1∑

k=0

(αλ)k

xkk!
, x > 0.

Having differentiated the last equation by x we obtain the
density of variable ρ:

fρ(x) = e
−αλ

x

n−1∑

k=0

(αλ)k(αλ− kx)

k!xk+2
, x > 0.

It is evident that within the described model the random vari-
able ρ does not have moments of the first and the following rates:

Eρ =

∞∫

0

e
−αλ

x

n−1∑

k=0

(αλ)k(αλ− kx)

k!xk+1
dx = ∞.
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Consider probabilistic characteristics of the probability of “not
losing” the claim, i. e. π. For the distribution function we have

Fπ(x) = 1− P
(
ρ <

1− x

x

)
= 1− e

−αλx
1−x ·

n−1∑

k=0

(αλ)kxk

(1− x)kk!
,

x ∈ (0, 1).

In this case the density of π can be found with the formula

fπ(x) = e
−αλx

1−x
αλ

(1− x)2
·
n−1∑

k=0

(αλ)kxk

(1− x)kk!

− e
−αλx

1−x ·
n−1∑

k=0

(αλ)k

k!
· kx

k−1(1− x)k + kxk(1− x)k−1

(1− x)2k

= e
−αλx

1−x ·
n−1∑

k=0

(αλ)kxk−1(αλx− kx+ k)

k! (1− x)k+2
, x ∈ (0, 1).

Let us find the expectation and the variance of the random
variable π. We have

Eπ =

1∫

0

e
−αλx

1−x ·
n−1∑

k=0

(αλ)kxk(αλx− kx+ k)

k! (1− x)k+2
dx

=

∞∫

0

e−z ·
n−1∑

k=0

zk(z + k)

k! (αλ+ z)
dz

=
n−1∑

k=0

1

k!

[∞∫

0

e−zzk+1

αλ+ z
dz + k

∞∫

0

e−zzk

αλ+ z
dz

]
.

Consider the following designation. Let Ei (x) be an integral
exponential function:

Ei (x) = −
∞∫

−x

e−t

t
dt.
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Using formulae [4, formula 567.9] and [5, formula 3.351],
calculate as k ≥ 1 the integral

∞∫

0

e−zzk

αλ+ z
dz =

∞∫

αλ

eαλe−t(t− αλ)k

t
dt

= eαλ(−αλ)k
∞∫

αλ

e−t

t
dt+ eαλ

∞∫

αλ

e−t ·
k∑

l=1

C lkt
l−1(−αλ)k−1 dt

= −eαλ(−αλ)k Ei (−αλ) +
k∑

l=1

l−1∑

m=0

(−1)k−l(αλ)k−l+m
k!

l(k − l)!m!
.

Thus,

Eπ = 1 + eαλαλEi (−αλ) −
n−1∑

k=1

eαλ(−αλ)k Ei (−αλ)(k − αλ)

k!

+
n−1∑

k=1

k+1∑

l=1

l−1∑

m=0

(−1)k−l+1(αλ)k−l+m+1 k + 1

l(k − l + 1)!m!

+
n−1∑

k=1

k∑

l=1

l−1∑

m=0

(−1)k−l(αλ)k−l+m
k

l(k − l)!m!
.

Now let us find the second moment of the random variable π:

Eπ2 =

1∫

0

e
−αλx

1−x

n−1∑

k=0

(αλ)kxk+1(αλx− kx+ k)

k! (1− x)k+2
dx

=
n−1∑

k=0

1

k!

[∞∫

0

e−zzk+2

(αλ+ z)2
dz + k

∞∫

0

e−zzk+1

(αλ+ z)2
dz

]
.

Calculate as k ≥ 1 the integral

∞∫

0

e−zzk+2

(αλ+ z)2
dz =

∞∫

αλ

eαλe−t(t− αλ)k+2

t2
dt
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= eαλ
[ ∞∫

αλ

e−t(−αλ)k+2

t2
dt+

∞∫

αλ

e−t(k + 2)(−αλ)k+1

t
dt

+
k+2∑

l=2

C lk+2(−αλ)k−l+2

∞∫

αλ

e−ttl−2 dt

]
= (−1)k+2(αλ)k+1

+ eαλ(−αλ9)k+2 Ei (−αλ) − eαλ(k + 2)(−αλ)k+1 Ei (−αλ)

+
k+2∑

l=2

C lk+2(−αλ)k−l+2(l − 2)!
l−2∑

m=0

(αλ)m

m!
.

Thus,

Eπ2 =
n−1∑

k=0

1

k!

[
(−1)k+1(αλ)k(k − αλ)

+ eαλ(−αλ)k Ei (−αλ)((αλ)2 + 2αλ− k(k + 1))

+
k+2∑

l=2

C lk+2(−αλ)k−l+2(l − 2)!
l−2∑

m=0

(αλ)m

m!

+ k
k+1∑

l=2

C lk+1(−αλ)k−l+1(l − 2)!
l−2∑

m=0

(αλ)m

m!

]
.

It is now easy to find the variance of the random variable π.
Notice that despite cumbersome view of the formulae for the

moments of the probability of “not losing” a claim, it is easy
to realize them by computer to obtain the numerical expression
of them for applied tasks for any natural n. However, the most
interesting case of this model corresponds to n = 1 (i. e. exponential
case). Let us quote the corresponding formulae:

Fρ(x) = e
−αλ

x , fρ(x) =
αλe

−
αλ
x

x2
, x > 0;

Eρ =

∞∫

0

αλe−αλy

y
dy = ∞;
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Fπ(x) = 1− e
−αλx

1−x , fπ(x) =
αλe

−
αλx
1−x

(1− x)2
, x ∈ (0, 1);

Eπ = 1 + αλeαλ Ei (−αλ), Eπ2 = Eπ(2 + αλ) − 1.

The results presented in this article are not complete within
the problem of Bayesian queuing systems and Bayesian reliability
problems; even considering M|M|1|0 type of systems. Obviously,
further development within the presented problem area requires us
to examine other a priori distributions of the variables λ, µ and
other traditional input parameters of queuing models that could
be interesting in practical cases. The distributions of the variables
that characterize the functioning of different system types (such as
M|G|1, M|M|n|0 and others) can be calculated after they have been
randomized taking into account the given a priori distributions.
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G-NETWORK WITH THE ROUTE CHANGE 1
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Mathematics University of Salerno, Fisciano, Italy

Alexander Pechinkin
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of Sciences, Moscow, Russia

Queueing networks with negative customers (G-networks),
Poisson flow of positive customers, non-exponential nodes, and
dependent service at the different nodes are under consideration.
Every customer arriving at the network is defined by a set of
random parameters: customer route, the length of customer route,
customer volume and its service time at each route stage as well.
The arrival of a negative customer to a queuing system causes
one of the ordinary (or “positive”) customers to be removed (or
“killed”) if any is present. The “killed” customer continues its way
along the new random route. For such G-networks, the multidi-
mensional stationary distribution of the network state probabilities
is shown to be representable in product form.

1. Network description

Recently, the big attention in the queuing theory is given to
queueing networks with negative customers, or to the G-networks
introduced by E. Gelenbe (see, for example, [1, 4]).

This attention is caused by the fact that G-networks model
many phenomena in information and telecommunication networks,
neural networks etc. You can find the extensive bibliography on
G-networks in [5].

In the present paper, the variant of a G-network with dependent
service at nodes is considered. Some previous results on G-networks
with dependent service at nodes could be found in [6, 7]. Our new
results, in terms of information and telecommunication networks,
can be treated, in particular, as destruction of information message
and their transformation in interfering messages (e. g. spam) which
create additional loading for a network.

1 The research has been performed with the support of the Russian
Foundation for Basic Research (grants 06-07-89056 and 08-07-00152).
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We consider an open queueing network with M nodes.
Each node s, s = 1,M , can be any of the following types:

(1) infinite-server;

(2) single-server with infinite buffer and LIFO discipline with
interruption and resumption;

(3) single-server with infinite buffer and processor sharing (PS)
discipline.

Let’s agree to denote random variables (RV) with capital Latin
letters, and realizations of RV with corresponding lower case letters.
Additionally, vector RV and any vectors we shall allocate with a
semiboldface font.

A Poisson flow of (usual, positive) customers of intensity λ
enters the network. Each customer arriving at the network is
characterized by a set of random variables (L,R,Y,X), which
depend neither on analogous random variables for other customers
nor on network pre-history, where:

— L is a customer route random length, i. e. the number of
stages (nodes) at which he will be served;

— R = (R1, . . . ,RL) is a random route comprising an assembly
of node numbers (the same nodes at different stages are allowed)
that the customer passes through in consecutive order at all L
stages;

— Y = (Y1, . . . ,YL) are customer random volumes at route
stages the customer consecutively passes through (the case when
these volumes are different at different stages are considered too);

— X = (X1, . . . ,XL) are customer random service times at the
route stages the customer consecutively passes through.

It is obvious that under this network description the volume Yn
and the service time Xn define the service of a customer at node
Rn. Let us recall that the routes R with repetitions of node numbers
are allowed, i. e. a customer can be served at the same node s
several times (but probably with different customer volumes).

Stochastic characteristics of a random variable (L,R,Y,X) are
given by the joint probability distribution function (PDF)

B(l, r,y,x) = P{L = l, Rn = rn, Yn ≤ yn, Xn ≤ xn, n = 1, l}.
Further on, let us denote by

G(l, r,y) = P{L = l, Rn = rn, Yn ≤ yn, n = 1, l}
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the joint PDF of the route R of the length L and with customer
volumes Y at the route stages, by

B(x | l, r,y) = P{Xn ≤ xn, n = 1, l | L = l, R = r, Y = y}
the conditional joint PDF of the customer service lengths X at the
route stages under a fixed route R = r of the length L = l and
volumes Y = y, and by

Bn(x | l, r,y) = P{Xn ≤ x | L = l, R = r, Y = y}, n = 1, l,

the conditional PDF of the customer service length Xn at the n-th
stage (at a node with number Rn = rn) under a fixed route R = r
of the length L = l and volumes Y = y.

We shall expect that service lengths are conditionally indepen-
dent along the route, i. e. the conditional PDF B(x | l, r,y) has the
form

B(x | l, r,y) =
l∏

n=1

Bn(xn | l, r,y).

Along with the flow of positive customers described above, flows
of negative customers arrive at the network. These flows are defined
in the following way.

A1. The flows arriving at different nodes are independent.

A2. A customer flow arriving at node s of type 2 or 3 is Poisson
one of intensity γs.

A3. A customer flow arriving at node s of type 1 is a Markov
one with intensity γs(n) depending (only) on the number n of busy
servers at this node in the following way: γs(n) = ns.

A4. A negative customer arriving at a node s with k positive
customers in service at this node (if this node is of the type 1
or 3, then k is the total number of positive customers at the node,
if it is of type 2, then k = 1) chooses one of positive customers
being served with probability 1/k. After this, if the chosen cus-
tomer is “not killed”, the negative customer either with probability
ωn(x | l, r,y) immediately “kills” it and quits the network or with
the complementary probability 1− ωn(x | l, r,y) quits the network
without inducing any action. Here (l, r,y) are the parameters of
the chosen positive customer, defined earlier; n is the number of
route stage in which this customer is served (it is only natural
that rn = s) and x is the elaborated (serviced) customer length.
However, the “killed” positive customer does not leave the system



G-network with the route change 57

but passes in node R∗
1 and continues to be served according to new

RV (L∗,R∗,Y∗,X∗). Distribution of RV (L∗,R∗,Y∗,X∗) depends
only on RV (L,R,Y) of “killed” customer and N , i. e., number of
stage at which a customer has been “killed” in node RN = s. The
distribution has, under condition of (L,R,Y) = (l, r,y) and when
the customer has been “killed” at the stage with number N = n, a
conditional distribution function

H(l∗, r∗,y∗ | l, r,y,n)

= P{L∗ = l∗, R∗
m = r∗m, Y

∗
m ≤ y∗m, m = 1, l∗ |
(L,R,Y) = (l, r,y), N = n}.

Service lengths of “killed” customer are depends from (L∗,R∗,Y∗)
only and are conditionally independent along the route, i. e. the
conditional PDF

C(x | l∗, r∗,y∗) = P{X∗
m ≤ xm, m = 1, l∗ |

L∗ = l∗, R∗ = r∗, Y∗ = y∗}
is of the form of

C(x | l∗, r∗,y∗) =
l∗∏

m=1

Cm(xm | l∗, r∗,y∗),

where

Cm(x | l∗, r∗,y∗) = P{X∗
m ≤ x | L∗ = l∗, R∗ = r∗, Y∗ = y∗},
m = 1, l∗,

is the conditional PDF of the “killed” customer service length X∗
n at

the m-th stage (at a node with number R∗
n = r∗n) under a fixed route

R∗ = r∗ of the length L∗ = l∗ and volumes Y∗ = y∗. If there is a
“killed” already positive customer on the chosen server, it simply
passes to the node corresponding to the consequent stage of service
and continues to be served accordingly to its set of parameters.
Finally, if at the moment of a negative customer’s arrival into
some node there is no positive customers there, then the negative
customer quits the network without inducing any action.

We shall make an additional technical assumption on PDFs
G(l, r,y) and H(l∗, r∗,y∗ | l, r,y,n). Namely, we suppose that the
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PDFs G(l, r,y) and H(l∗, r∗,y∗ | l, r,y,n) are absolutely continuous,
and denote by g(l, r,y) and h(l∗, r∗,y∗ | l, r,y,n) their densities, i. e.

g(l, r,y) =
∂l

∂y1 . . . ∂yl
G(l, r,y).

and

h(l∗, r∗,y∗ | l, r,y,n) =
∂l∗

∂y∗1 . . . ∂y
∗
l∗
H(l∗, r∗,y∗ | l, r,y,n).

This assumption could be easily neglected if we interpret derivatives
as generalized ones.

2. Auxiliary functions

First we introduce auxiliary functions in the following way
(below we shall use the notation ω = 1− ω for any probability ω,
in particular, F (x) = 1− F (x) for any PDF F (x)):

Fn(x | l, r,y) = 1− exp

{
−γrn

x∫

0

ωn(z | l, r,y) dz

}
, n = 1, l,

B∗
n(x | l, r,y) = 1−Bn(x | l, r,y)Fn(x | l, r,y), n = 1, l,

ωn(l, r,y) =

∞∫

0

Fn(x | l, r,y) bn(x | l, r,y) dx, n = 1, l,

ω∗
n(l, r,y) =

n−1∏

i=1

ωi(l, r,y), n = 1, l + 1,

g∗n(l, r,y) = ω∗
n(l, r,y) g(l, r,y), n = 1, l,

h(l∗, r∗,y∗) =
∑

l,r

∫

R
l

l∑

n=1

h(l∗, r∗,y∗ | l, r,y,n) g∗n(l, r,y)ωn(l, r,y)dy,

m+
n (l, r,y) =

∞∫

0

B∗
n(x | l, r,y) dx, n = 1, l,

m−
n (l, r,y) =

∞∫

0

Cn(x | l, r,y) dx, n = 1, l.
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Hereinafter summation by vector argument means summation by
all possible values of its coordinates. Besides, for the sake of brevity
we shall use the notations∫

R
l

. . . dy =
∫
. . .

∫

R
l

. . . dy1 . . . dyl.

It is only natural that for the nodes of types 2 and 3 the last
two characteristics are defined under the condition that there exist
no other customers at these nodes.

Let us set for the s-th node

λ+
s = λ

∑

l,r

∫

R
l

l∑

n=1

δs−rng
∗
n(l, r,y)dy,

λ−s = λ
∑

l,r

∫

R
l

l∑

n=1

δs−rnh(l, r,y)dy,

λs = λ+
s + λ−s ,

ρ+
s = λ

∑

l,r

∫

R
l

l∑

n=1

δs−rng
∗
n(l, r,y)m+

n (l, r,y)dy,

ρ−s = λ
∑

l,r

∫

R
l

l∑

n=1

δs−rnh(l, r,y)m−
n (l, r,y)dy,

ρs = ρ+
s + ρ−s ,

where δj is the Kronecker symbol.
Let us suppose that λs < ∞ for all nodes s. The last condition

means that the total flow intensity λs of positive customers arriving
at node s is finite. Note that this condition does not follow from the
condition that the traffic intensity of these nodes is finite too (the
latter condition will be given below).

3. Markov process

Let us now define the Markov process describing the stochastic
behavior of the network under consideration.

We shall denote a network state by an assembly z = (z1, . . . ,zM ),
where the assembly zs = (ks, zs1, . . . , zsks), s = 1,M , in turn, de-
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scribes the state of the sth node in the following way: ks is the
number of customer at the sth node and the assembly zsi, s = 1,M ,
i = 1, ks, with components zsi = (lsi, rsi,ysi,wsi,nsi,xsi) stores the
information (lsi, rsi,ysi,wsi) on the i-th customer at the sth node,
and its position (nsi,xsi) in the network:

— lsi is the route length;

— rsi = (rsi1, . . . , rsilsi
) is the route;

— ysi = (ysi1, . . . , ysilsi
) are customer volumes at its route

stages;

— nsi is the number of the route’s stage at which the customer
exists (while being served or waiting for service); clearly, nsi ≤ lsi;

— wsi is the function which shows customer state; we set
wsi = 0 if the customer is “not killed”, and wsi = 1 if the customer
is “killed” (but is being served);

— xsi is the customer length already serviced at a given stage.

Evidently that due to the notations introduced above, we have
rsinsi = s. It is also clear that the vector zs = 0 if ks = 0, i. e.
when there are no customers at the sth node, and the vector
z = 0 = (0, . . . , 0) in the case, when there are no customers in the
network at all.

In what follows we will accept the following rule of numbering
of customers in the nodes. For the nodes of types 1 or 3, the
numbers are assigned randomly, and for the nodes of type 2, in the
inverse order to their arrivals at the nodes.

The set of states of the network is denoted by Z = {z}.
To describe the operation of our queueing network, let us

consider the process

Z(t) = z, if the network exists in state z at instant t.

It is obviously a Markov process.

4. Product form solution

The stationary density of the state probability distribution of the
process Z(t) is denoted by p(z).

The following theorem on the multiplicative representation of
stationary network state probabilities for a considered network
holds.
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Theo rem. If for a node s of type 1 ρs < 1, and for a node s
of types 2 and 3 ρs < 1, then there exists a limit (stationary)
probability state distribution of the process Z(t) with probability
distribution density

p(z) =
M∏

s=1

ps(zs),

thereby:
for a node s of the type 1

ps(zs) = e−ρs
λks

ks!

ks∏

i=1

(δwsig
∗
nsi

(lsi, rsi,ysi)B
∗
nsi

(xsi | lsi, rsi,ysi)

+ δ1−wsi
h(lsi, rsi,ysi)Cnsi(xsi | lsi, rsi,ysi));

for a node s of the type 2 or 3

ps(zs) = (1− ρs)λ
ks

ks∏

i=1

(δwsig
∗
nsi

(lsi, rsi,ysi)B
∗
nsi

(xsi | lsi, rsi,ysi)

+ δ1−wsi
h(lsi, rsi,ysi)Cnsi(xsi | lsi, rsi,ysi)).
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FAN-BEAM STOCHASTIC TOMOGRAPHY 1

Oleg Shestakov
Faculty of Computational Mathematics and Cybernetics,
Lomonosov Moscow State University, Moscow, Russia

In fan-beam tomography settings an object is illuminated by
the divergent pencil of rays emitted from the source which moves
around it. This scheme works much faster than traditional parallel
beam tomography. In some biological and physical applications an
abject under study is described by random function. This paper
considers the problem of recovering probabilistic characteristics of
random function from fan-beam projections.

1. Introduction. Problems of recovering probabilistic char-
acteristics of bivariate random functions from characteristics of
univariate projections arise in physics and microbiology (see [1]).
The main feature of these problems is that object under study
may have several (and even infinite number) of states, which
randomly change during the process of projection registration and
conventional tomographic approach cannot be used in this case.
Such problems led to appearance of a new branch of computational
tomography, which was named stochastic tomography.

In papers [2-4] the problem of recovering probabilistic char-
acteristics of bivariate random functions is considered in parallel
beam settings. It is shown that in general case this problem is
characterized by a great ambiguity and without restrictions on
realizations of random functions meaningful results can be obtained
only in the case, when random function has at most denumerable
number of states. Distribution reconstruction method for class of
such functions is introduced in paper [4].

Sometimes, however, one must use fan-beam scheme (see [1]),
where an object is illuminated by the divergent pencil of rays
emitted from the source which moves around it. In this paper
we consider the problem of recovering probabilistic characteristics
of bivariate random functions from characteristics of univariate
projections for such scheme.

1 This work was supported by the Russian Foundation for Basic Re-
search (grant 08-01-00567-a).
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2. Statement of the problem. A formal statement of the
problem is as follows. There is a bivariate random function ξ(x, y),
which describes stochastic object. Throughout this paper we will
assume that: 1) ξ(x, y) has a compact support (without loss of
generality we will assume that this support is a unit circle with
center at the origin: U = {(x, y) ∈ R

2 : x2 + y2 ≤ 1}), 2) ξ(x, y)
is integrable with probability 1: ξ(x, y) ∈ L1(U) (a. e.). Functions,
which differ on a set of null Lebesgue measure, will be considered
as equivalent. Thus the sign “≡” means equivalence in L1-norm.

Let us assume that the source of radiation moves around the
circle with radius D centered at the origin and the circle U
is contained within this circle. Denote by Rβξ(γ) projection of
function ξ(x, y) in fan-beam scheme of scanning. Here β ∈ [0, 2π)
is an angular coordinate of the source (an angle between vertical
axis and a line connecting origin and the source of radiation),

and γ ∈
[
−π

2
,
π

2

]
describes the position of ray within the pencil

of rays (an angle between the given ray and the central ray of
the pencil). In this scheme projection data are described by the
following expression:

Rβξ(γ) =

∞∫

−∞

∞∫

−∞

ξ(x, y)

× δ(x cos(β + γ) + y sin(β + γ) −D sin γ) dx dy.

In stochastic tomography problems it is supposed that some in-
formation on probabilistic characteristics of projections (all or some
set) is available. The problem is to determine certain probabilistic
characteristics of the random function ξ(x, y).

The first question is whether this determination is possible,
i. e. about uniqueness of the correspondence between characteristics
of bivariate random function and characteristics of its projections.
As in parallel beam settings this question may take the following
forms:

1. Is it possible to unambiguously determine joint dis-
tributions of ξ(x1, y1), . . . , ξ(xn, yn), if joint distributions of
Rβξ(γ1), . . . ,Rβξ(γm) are known for all m = 1, 2, . . . and all
β ∈ [0, 2π)?
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2. Is it possible to unambiguously determine variances
D(ξ(x, y)), if variances D(Rβξ(γ)) are known for all β ∈ [0, 2π]

and γ ∈
[
−π

2
,
π

2

]
?

3. Is it possible to unambiguously determine variances
D(ξ(x, y)), if joint distributions of Rβξ(γ1), . . ., Rβξ(γm) are known
for all m = 1, 2, . . . and all β ∈ [0, 2π)?

4. Is there any connection between “variability” (the variance
value) of a random bivariate function in a given point and variability
of projections in projections of this point (this question is important
for biological applications)?

We do not consider the problem of recovering mathematical
expectation from mathematical expectations of projections because
this problem is equivalent to conventional (nonstochastic) tomogra-
phy (see [2]).

3. Radon transform. In this section we will provide necessary
information on Radon transform, which lies in the basis of parallel
beam tomography algorithms. Radon transform of integrable func-
tion f(x, y) is defined by

Pϕf(t) =

∞∫

−∞

∞∫

−∞

f(x, y)δ(x cosϕ+ y sinϕ− t) dx dy

for ϕ ∈ [0,π) and t ∈ R.
Central slice theorem holds (see [5]):

P̂ϕf(ω) = f̂(ω cosϕ,ω sinϕ),

where P̂ϕf(ω) is an univariate Fourier transform of Pϕf(t) with

respect to variable t, and f̂(ω1,ω2) is a bivariate Fourier transform
of f(x, y). General projection theorem also holds (see [5]):

∞∫

−∞

Pϕf(t)h(t) dt =

∞∫

−∞

∞∫

−∞

f(x, y)h(ω cosϕ+ ω sinϕ) dx dy, (1)

where h(t) is an arbitrary function, such that integrals in the left-
hand and right-hand sides of (1) exist.
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General projection theorem gives the following useful corollary
(see [5]):

∞∫

−∞

Pϕf(t)tm dt = pm(ϕ),

where pm(ϕ) is a polynomial in cosϕ and sinϕ of degree m.
The following relation between Pϕf(t) and Rβf(γ) holds:

Rβf(γ) = Pβ+γf(D sin γ).

4. General case. Counterexamples. In this section we will
prove some propositions, which show that in general cases answers
to the questions 2 and 4 from section 2 are negative. It seems that
answers to the questions 1 and 3 are also negative, although there
are no counterexamples for fan-beam scheme yet (counterexamples
for parallel beam scheme can be found in [2] and [3]). However,
in the next section we will describe a class of random functions
(sufficient for biological applications), for which it is possible to
reconstruct probabilistic characteristics of random function, if prob-
abilistic characteristics of some set of projections are known.

P rop o s i t i on 1. There exist two random functions ξ1(x, y)
and ξ2(x, y), defined on the unit circle U , such that
D(ξ1(x, y)) 6= D(ξ2(x, y)) for all x and y, such that x2 + y2 < 1,
while D(Rβξ1(γ)) = D (Rβξ2(γ)) for all β ∈ [0, 2π) and

γ ∈
[
−π

2
,
π

2

]
.

P r o o f. Let η1(x, y) and η2(x, y) be two homogeneous and
isotropic random fields such that Eη1(x, y) = Eη2(x, y) = 0,
D(η1(x, y)) = D (η2(x, y)) = 1. Suppose that the covariance
function ρ1(t) of η1(x, y) is positive and decreases for t > 0, and
the covariance function ρ2(t) of η2(x, y) satisfies the equality
ρ2(t) = ρ1(ct), where c > 1. Let η0(x, y) be a random field of the
form η0(x, y) = νf(x, y), where ν is a random variable independent
of η2(x, y) and taking two values, -1 and 1, with probability 1/2
each, and f(x, y) is a spherically symmetric function, positive for

x2 + y2 < 1 and equal to zero for x2 + y2 ≥ 1. Below we prove that
this function can be chosen in such a way that all conditions of the
proposition are satisfied.

3
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Let us define

ξ1(x, y) =

{
η1(x, y) for x2 + y2 ≤ 1,

0 otherwise

and

ξ2(x, y) =

{
η1(x, y) + η0(x, y) for x2 + y2 ≤ 1,

0 otherwise.

Then for x2 + y2 < 1,

D(ξ2(x, y)) = D (η1(x, y)) + D (η0(x, y)) = 1 + f 2(x, y) 6= 1

= D(ξ1(x, y)).

Let us prove that there exists a spherically symmetric, positive
(for x2 + y2 < 1) function f(x, y) such that variances of all projec-
tions of ξ1(x, y) and ξ2(x, y) coincide.

Due to the symmetry, it is sufficient to consider the case β = 0.
We have

D(R0ξ1(γ)) = D (Pγξ1(D sin γ)) = D (P0ξ1(D sin γ))

= D

[ √
1−(D sin γ)2∫

−
√

1−(D sin γ)2

ξ1(D sin γ, y) dy

]

= E

[ √
1−(D sin γ)2∫

−
√

1−(D sin γ)2

ξ1(D sin γ, y) dy

]2

= E

[ √
1−(D sin γ)2∫

−
√

1−(D sin γ)2

ξ1(D sin γ,u) du ·

√
1−(D sin γ)2∫

−
√

1−(D sin γ)2

ξ1(D sin γ, v)dv

]

= E

[ √
1−(D sin γ)2∫

−
√

1−(D sin γ)2

√
1−(D sin γ)2∫

−
√

1−(D sin γ)2

ξ1(D sin γ,u)ξ2(D sin γ, v) du dv

]
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=

√
1−(D sin γ)2∫

−
√

1−(D sin γ)2

√
1−(D sin γ)2∫

−
√

1−(D sin γ)2

E ξ1(D sin γ,u)ξ2(D sin γ, v) du dv

=

√
1−(D sin γ)2∫

−
√

1−(D sin γ)2

√
1−(D sin γ)2∫

−
√

1−(D sin γ)2

ρ1(u− v) du dv

and, analogously,

D(R0ξ2(γ))

=

√
1−(D sin γ)2∫

−
√

1−(D sin γ)2

√
1−(D sin γ)2∫

−
√

1−(D sin γ)2

ρ1(c(u− v)) du dv + [R0f(γ)]2.

From lemma 2 of [2] it follows that there exists positive (for
x2 + y2 < 1) spherically symmetric function f(x, y) such that

Pϕf(t) =

[ √
1−t2∫

−
√

1−t2

√
1−t2∫

−
√

1−t2

(ρ1(u− v) − ρ1(c(u− v))) du dv

]1/2

.

For this function we have

R0f(γ) = Pγf(D sin γ) = P0f(D sin γ)

=

[ √
1−(D sin γ)2∫

−
√

1−(D sin γ)2

√
1−(D sin γ)2∫

−
√

1−(D sin γ)2

(ρ1(u− v)− ρ1(c(u− v))) du dv

]1/2

.

Thus D(R0ξ1(γ)) = D (R0ξ2(γ)). This completes the proof.
For some biological problems it is sufficient to determine the

points, in which bivariate random function has relatively large
variance. In other words there is no need to obtain variance values.
Thus there is a question of relationship between variance magnitude
of certain points of random object and variance magnitude of
projections of these points. The following propositions show that in
general case there is no relationship between these characteristics.

3*
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P rop o s i t i o n 2. There exists a random function ξ(x, y),
x2 + y2 ≤ 1, such that all projections of its most variable point
(having maximal variance) are the least variable points of the
corresponding projections.

P ro o f. Let η be a random variable such that

Eη = 0, D(η) = 1.

Let us define

ψ(x, y) =





1− 2
√
x2 + y2 if

√
x2 + y2 ≤ 1

2
,

−1

2
if

1

2
<

√
x2 + y2 ≤ 1,

0 if
√
x2 + y2 > 1.

Consider the following random field

ξ(x, y) = ηψ(x, y).

We have
E ξ(x, y) = 0,

and
D(ξ(x, y)) = E ξ2(x, y) = ψ2(x, y),

so, the point (0, 0) is the most variable point of the random field
ξ(x, y) (ψ(0, 0) > |ψ(x, y)|, hence D(ξ(0, 0)) > D(ξ(x, y)) for all
(x, y) 6= (0, 0)). Let us prove that all projections of this point have
null variance:

D(Rβξ(0)) = 0.

Due to the symmetry, it suffices to prove this equality for one
value of β, say, β = 0. We have

D(R0ξ(0)) = E

[ 1∫

−1

ηψ(0, y) dy

]2

= Eη2 ·
[ 1∫

−1

ψ(0, y) dy

]2

= 0.

At the same time, D(R0ξ(γ)) 6= 0 for all γ 6= 0 (γ ∈ [−π

2
,
π

2
]), since

R0ξ(γ) = Pγξ(D sin γ) and, as it is shown in [2], D(Pϕξ(t)) 6= 0, if
t 6= 0.

This completes the proof of the proposition.

P rop o s i t i o n 3. There exists a random function ξ(x, y),
x2 + y2 ≤ 1, such that all projections of its least variable point
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(having minimal variance) are the most variable points of the
corresponding projections.

The proof is analogous to that of the previous proposition.

5. Class T and the uniqueness theorem. As it follows from
the previous section, in general case, i. e. when stochastic object is
described by an arbitrary random function, no meaningful results
can be obtained. However, situation can change under some restric-
tions on random functions considered. In this section we introduce
a class of random functions which, on the one hand, is wide
enough to describe many situations in applications, for instance,
in microbiology, and on the other hand, guarantees uniqueness
of correspondence between probabilistic distributions of stochastic
objects and distributions of projections.

Let T be the set of all random functions ξ(x, y) of the form

ξ(x, y) = fν(x, y),

where f1(x, y), f2(x, y), . . . — is a sequence of integrable functions

defined on the unite circle U = {(x, y) ∈ R
2 : x2 + y2 ≤ 1}, and ν

is a random variable taking positive integer values.
Random functions from class T are nothing else than discrete

random elements in the space L1(U), therefore their probabilistic
structure is completely determined by the distribution, i. e. by the
collection

(f1(x, y), f2(x, y), . . . ; p1, p2, . . .),

where pi = Pr(ξ(x, y) = fi(x, y)), i = 1, 2, . . . ,
∞∑
i=1

pi = 1. We denote

the distribution of ξ(x, y) by Prξ.
It turns out that in the frames of introduced model distribution

of a stochastic object is uniquely determined by distributions of its
projections.

Theo rem 1. Let ξ(x, y) ∈ T , η(x, y) ∈ T , and

PrRβξ = PrRβη

for all β ∈ Λ ⊆ [0, 2π), where Λ is an infinite set, then

Prξ = Prη.

In other words, in class T distribution of any random function
is uniquely determined by distributions of each infinite set of its
projections.
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To prove this theorem we will make use of the following lemma,
stating uniqueness of reconstruction from fan-beam projections (see
[6]).

L emma 1. Let f(x, y) ∈ L1(U) and let Λ ⊆ [0, 2π) be an
infinite set. If Rβf(γ) ≡ 0 for all β ∈ Λ, then f(x, y) ≡ 0.

P ro o f. Let us note that

Rβf(γ) =

∞∫

−∞

f(−D sinβ + t sin(β + γ),D cosβ − t cos(β + γ) dt.

Consider the following function

H(β,ϕ) =

π
2∫

−π
2

Rβf(γ)

|sin(β + γ) cosϕ− cos(β + γ) sinϕ| dγ. (2)

We have

H(β,ϕ)

=

π
2∫

−π
2

∞∫

−∞

f(−D sin β + t sin(β + γ),D cosβ − t cos(β + γ)) |t|
|t(sin(β + γ) cosϕ− cos(β + γ) sinϕ)| dt dγ

=

π
2 +β∫

−π
2 +β

∞∫

−∞

f(−D sinβ + t sinϑ,D cosβ − t cosϑ) |t|
|t(sinϑ cosϕ− cosϑ sinϕ)| dt dϑ

=

3π
2 +β∫

−π
2 +β

∞∫

0

f(−D sin β + t sinϑ,D cosβ − t cosϑ)t

|t(sinϑ cosϕ− cosϑ sinϕ)| dt dϑ.

Integrand is a 2π-periodic function of ϑ, so we can write

H(β,ϕ) =

2π∫

0

∞∫

0

f(−D sin β + t sinϑ,D cosβ − t cosϑ)t

|t(sinϑ cosϕ− cosϑ sinϕ)| dt dϑ.
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Switching from the polar to rectangular coordinate system and
taking into consideration that f(x, y) is defined in the unit circle U ,
we have

H(β,ϕ)

=

∞∫

−∞

∞∫

−∞

f(x, y)

|−D sinβ cosϕ+D cosβ sinϕ− x cosϕ− y sinϕ| dx dy

=
∫ ∫

U

f(x, y)

|D sin(ϕ− β) − (x cosϕ+ y sinϕ)| dx dy

=

1∫

−1

Pϕf(t)

|D sin(ϕ− β) − t| dt, (3)

where in the last equality we made use of general projection
theorem (1). By the assumption of lemma H(β,ϕ) = 0 for β ∈ Λ.
Let β0 be any limit point of the set Λ, and let O be some fixed

neighborhood of point β0 +
π

2
, such that for any ϕ ∈ O we have

D sin(ϕ − β0) > 1 + 2ε. Then for an infinite number of β ∈ Λ and
any ϕ ∈ O we have D sin(ϕ− β) > 1 + ε. For these β and ϕ func-

tion
1

D sin(ϕ− β) − t
can be expanded into series, which converges

uniformly for t ∈ [−1, 1]. Substituting this expansion into (3) and
integrating termwise, we have

H(β,ϕ) =
∞∑

m=0

(D sin(ϕ− β))−(m+1)pm(ϕ). (4)

Function H(β,ϕ) vanishes on an infinite set of β ∈ Λ and ϕ ∈ O,
such that D sin(ϕ− β) > 1 + ε. It is possible only if all pm(ϕ) = 0
for any ϕ ∈ O. Since pm(ϕ) are polynomials, they are identically
zero for all ϕ ∈ [0, 2π]. This means that Pϕf(t) ≡ 0 for all ϕ ∈ [0,π),
and hence by the central slice theorem we conclude that f(x, y) ≡ 0.
This completes the proof of lemma.

P ro o f o f t he t he o rem 1. Let Λ ⊆ [0, 2π) be an infinite
set and PrRβξ = PrRβη for all β ∈ Λ. Suppose that Prξ 6= Prη. It

means that there exists a function f(x, y) ∈ L1(U) such that

Pr(ξ(x, y) = f(x, y)) 6= Pr(η(x, y) = f(x, y)),
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and hence

|Pr(ξ(x, y) = f(x, y)) − Pr(η(x, y) = f(x, y))| = δ > 0.

Denote by f1(x, y), f2(x, y), . . . values of the random ele-
ment ξ(x, y), different from f(x, y) (we assume that these
values are numbered in the decreasing order of probabilities
Pr(ξ(x, y) = fi(x, y))), and by g1(x, y), g2(x, y), . . . analogous
values of η(x, y) (which are also numbered in the decreasing order
of probabilities Pr(η(x, y) = gi(x, y))) (thus f(x, y) 6≡ fi(x, y) and
f(x, y) 6≡ gi(x, y), i = 1, 2, . . .). For each fixed i = 1, 2, . . . let Ai be
the set of all β ∈ Λ, for which

Rβf(γ) ≡ Rβfi(γ)

and, respectively, Bi be the set of all β ∈ Λ, for which

Rβf(γ) ≡ Rβgi(γ).

Each of the sets Ai and Bi is finite (maybe empty). Indeed, if
any set Ai is infinite then by lemma 1 we have f(x, y) ≡ fi(x, y).
Similarly, if any set Bi is infinite, then f(x, y) ≡ gi(x, y).

Thus, the set

Cn =
n⋃

i=1

(
Ai

⋃
Bi

)

is finite for any n, hence the set Λ \ Cn is not empty.
Consider arbitrary β ∈ Λ \ Cn. Since for this β we have
Rβf(γ) 6≡ Rβfi(γ), i = 1, . . . ,n, then

Pr(ξ(x, y) = f(x, y)) ≤ Pr(Rβξ(γ) = Rβf(γ))

≤ Pr(ξ(x, y) = f(x, y)) +
∞∑

i=n+1

Pr(ξ(x, y) = fi(x, y)),

and so

|Pr(Rβξ(γ) = Rβf(γ)) − Pr(ξ(x, y) = f(x, y))|

≤
∞∑

i=n+1

Pr(ξ(x, y) = fi(x, y)) < ε1,n,

where ε1,n → 0 when n→ ∞.
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Similarly,

|Pr(Rβη(γ) = Rβf(γ)) − Pr(η(x, y) = f(x, y))|

≤
∞∑

i=n+1

P (η(x, y) = gi(x, y)) < ε2,n.

Since Pr(Rβξ(γ) = Rβf(γ)) = Pr(Rβη(γ) = Rβf(γ)), then

|Pr(ξ(x, y) = f(x, y)) − Pr(η(x, y) = f(x, y))|
≤ |Pr(Rβξ(γ) = Rβf(γ)) − Pr(ξ(x, y) = f(x, y))|
+ |Pr(Rβη(γ) = Rβf(γ)) − Pr(η(x, y) = f(x, y))| ≤ 2εn,

where εn = max(ε1,n, ε2,n) can be made arbitrarily small. But by
our assumption

|Pr(ξ(x, y) = f(x, y)) − Pr(η(x, y) = f(x, y))| = δ > 0.

This contradiction proves the theorem.

6. Classification of projections. Theorem 1 from the previous
section shows that in class T it is possible to reconstruct distribu-
tion of bivariate random function from distributions of projections.
In this section we develop an algorithm, which allows to sort
registered projections by the groups corresponding to different
states of a random function.

For the sake of simplicity we will consider functions from class
T , having at most two different states. Algorithm can be directly
generalized to any finite number of states, and for the case of
denumerable number of states we can “truncate” distributions of
projections as it is done in [4]. In addition, since in the frames of
considered problem functions fi(x, y) describe distribution of object
density, we can assume that they are nonnegative. We will also
assume that these functions are normalized, i. e. integrals of them
are equal to 1 (when these conditions are met, functions fi(x, y)
are probability densities).

So, let ξ(x, y) be a random function that takes values f1(x, y)
and f2(x, y) with probabilities p1 and p2. We assume that distri-
butions of Rβξ(γ) are known for each β ∈ Λ ⊆ [0, 2π). I. e. for
each β we know functions Rβfi(γ), i = 1, 2, which are projections
of functions fi(x, y), i = 1, 2, and are realized with probabilities p1
and p2 respectively. As a matter of fact, we don’t know in advance,
which realization of projection corresponds to which realization of
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a random function, i. e. it is possible that for some β function
Rβf1(γ) is a projection of f2(x, y), and Rβf2(γ) is a projection of
f1(x, y). We have to sort functions Rβfi(γ), i = 1, 2, for all β ∈ Λ
by the groups, so that each group contains realized projections that
correspond to the same state of a random function.

If p1 6= p2 then such classification can be performed according
to probabilities of states of projections, i. e. for each β ∈ Λ value
Rβfi(γ), which is realized with probability p1, we ascribe to the
first group, and value Rβfi(γ), which is realized with probability
p2, we ascribe to the second group.

In case p1 = p2 =
1

2
, projection classification algorithm is based

on the construction of approximations for functions H (i)(β,ϕ),
i = 1, 2, which are defined for f1(x, y) and f2(x, y) by expression
(2). If f1(x, y) 6≡ f2(x, y), then for almost every fixed ϕ, for which

functions H(i)(β,ϕ) are defined by expression (4), they may co-
incide only for finite number of β. Hereinafter we will consider

only those ϕ. Let Λ =
K⋃
k=1

Λk, and let ϕk, k = 1, . . . ,K, be such

that for all β ∈ Λk and some δ > 0 we have D sin(ϕk − β) > 1 + δ.
We assume that intersection of adjacent Λk is not empty and
for β ∈ Λk

⋂
Λk+1 we have

∣∣H(1)(β,ϕk) −H(2)(β,ϕk)
∣∣ > A and∣∣H(1)(β,ϕk+1) −H(2)(β,ϕk+1)

∣∣ > A for some A > 0. We will per-
form classification on each Λk separately. Let

H(i)
n (β,ϕ) =

n∑

m=0

(D sin(ϕ− β))−(m+1)p(i)
m (ϕ), i = 1, 2.

If all conditions on functions fi(x, y), described in the beginning of

the section, are met, then for all m and ϕ we have
∣∣∣p(i)
m (ϕ)

∣∣∣ ≤ 1.

Thus for all β ∈ Λk we have

∣∣H(i)(β,ϕk) −H(i)
n (β,ϕk)

∣∣ ≤ 1

(1 + δ)n . (5)

Let sj = (D sin(ϕk − βj))−1, and let βj , j = 0, . . . ,n, be the col-
lection of Tchebyshev interpolation points for Λk (see [7]). Using
expression (2), we can calculate values of H (i)(β,ϕk) in points

βj . There are 2n+1 ways to distribute values H(i)(βj ,ϕk), i = 1, 2,
among two groups. Let us denote by P the set of all such distribu-
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tions and solve linear systems

n∑

m=0

smj a
(h)
m = H(h)(βj ,ϕk), j = 0, . . . ,n

for every possible distribution h from P . Following ideas of [3], we
can obtain 2n+1 functions of the form

G(h)
n (β,ϕk) =

n∑

l=0

∏

j 6=l

((sin(ϕk − β))−1 − (sin(ϕk − βj))
−1)

∏

j 6=l

((sin(ϕk − βl))
−1 − (sin(ϕk − βj))

−1)
H(h)(βj ,ϕk)

(6)
(here superscript h denotes chosen distribution of values
H(i)(βj,ϕk), i = 1, 2, among two groups), from which we must

choose approximations for functions H(i)(β,ϕk), i = 1, 2. To

evaluate inaccuracy of approximations for functions H (i)(β,ϕk),
i = 1, 2, we use well-known estimate of Tchebyshev interpolation

(see [7]). From (5) it follows that for function G
(h)
n (β,ϕk), which

approximates H
(i)
n (β,ϕk) for i = 1 or i = 2, we must have

∣∣G(h)
n (β,ϕk) −H(1)

n (β,ϕk)
∣∣ ≤ 1

(1 + δ)n

(
8 +

4

π
ln(n+ 1)

)

or
∣∣G(h)

n (β,ϕk) −H(2)
n (β,ϕk)

∣∣ ≤ 1

(1 + δ)n

(
8 +

4

π
ln(n+ 1)

)

for all β ∈ Λk. Hence for all β ∈ Λk we must have

∣∣G(h)
n (β,ϕk) −H(1)(β,ϕk)

∣∣ ≤ 1

(1 + δ)n

(
9 +

4

π
ln(n+ 1)

)
(7′)

or
∣∣G(h)

n (β,ϕk) −H(2)(β,ϕk)
∣∣ ≤ 1

(1 + δ)n

(
9 +

4

π
ln(n+ 1)

)
. (7′′)

Starting with some n there are only 2 distributions h1 and h2 from
P , for which these inequalities hold for all β ∈ Λk. For those h1 and

h2 functions G
(hi)
n (β,ϕk), i = 1, 2, are taken to be approximations

for H(i)(β,ϕk).
Then, calculating values H(i)(β,ϕk), i = 1, 2, with the use of

(2) for each β ∈ Λk, we ascribe projections to the first or second
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group, depending on the closeness of these values to the values of

functions G
(hi)
n (β,ϕk), i = 1, 2, in point β.

Since intersection of adjacent Λk is not empty, for each
β ∈ Λk

⋂
Λk+1 values of H(i)(β,ϕ), i = 1, 2, for ϕ = ϕk and

ϕ = ϕk+1 will be grouped correctly by the states of random
function, because they are calculated for the same realization of

projection and for some A we have
∣∣H(1)(β,ϕk) −H(2)(β,ϕk)

∣∣ > A

and
∣∣H(1)(β,ϕk+1) −H(2)(β,ϕk+1)

∣∣ > A. (Remark: this condition
is required because algorithm of classification may fail in the
neighborhood of intersection points of functions H (1)(β,ϕk) and

H(2)(β,ϕk). As n increases, the total length of these neighborhoods
tends to zero.) Thus the “linkage” of groups for adjacent Λk is
implemented, and classification is performed on the whole set Λ.

When all projections are grouped we can reconstruct each state
of random function (and hence its distribution), using conventional
techniques of computer tomography.

Described algorithm is exact in the sense that if projections
are given exactly, then it is possible, in principle, to approximate
functions H(i)(β,ϕk) arbitrarily close and use their values to group
projections. In practice, however, it is impossible because of at
least two reasons. First reason lies in the basis of method itself,
because when expanding H(i)(β,ϕk) into series, we keep only finite
number of terms. Second reason is associated with inability of exact
registration of projections. If projections are given with some error,
then as n increases, estimates in the right-hand sides of (7′) and
(7′′) will decrease only to the certain limit, and after that they
will begin to increase. If projections Rβ(γ) are given with error,
whose level does not exceed ε, then, using (3) and the fact that if
error of Rβ(γ) does not exceed ε, then error of Pϕ(t) also does not
exceed ε, we can obtain the following estimates for approximations

of H(i)(β,ϕk):

∣∣G(hi)
n (β,ϕk) −H(i)(β,ϕk)

∣∣ ≤
(
2ε

δ
+

1

(1 + δ)n

)(
9 +

4

π
ln(n+ 1)

)
.

(8)
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ESTIMATION OF DELAY DISTRIBUTION

IN HIV DYNAMICS

Anastasia Ushakova
Department of Mathematical Sciences, Norwegian
University of Science and Technology, Trondheim,

Norway

In this paper we present two methods of estimating a delay
distribution in biological dynamical systems. The model of HIV
infection serves as an example of such systems. The first method
is based on parametric approach and on approximation of the delay
density by a gamma-density. The second method is nonparametric
and is based on solution of a convolution equation with selection
of the regularization parameter from a parametric start.

1. Introduction

One of the main problems in HIV infection research is un-
derstanding the events that occur during the long asymptomatic
period of the disease. This period, which usually starts after a few
weeks (or in some cases months) after infection, can last for many
years and inevitably turns into the AIDS stage, when the viral
load increases rapidly and the CD+ T-cell count declines to a point
at which the immune system fails to provide protection against
opportunistic infections. To describe quantitatively the processes
under consideration, one needs mathematical models which, on the
one hand, have to be adequate and, on the other hand, should
be simple enough. There are a number of such models, see for
example [1].

Let T (t), I(t), VI и VNI be respectively the density of non-
infected target cells, the density of productively infected cells, the
concentration of infections virus and the concentration of virus that
has been rendered non-infections by the protease inhibitors. One of
the most used and relatively simple models, which was developed
in [2], is as follows. First it is supposed that T (t) is constant
T (t) = T . Then

dI

dt
= kTVI(t) − δI(t), (1)
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dVI

dt
= (1− η)pI(t) − cVI(t),

dVNI

dt
= ηpI(t) − cVNI(t),

where k is the infection rate constant, p the rate at which a produc-
tively infected cell release virions, and η the drug efficacy (if η = 1,
the drug is assumed to be absolutely effective so that all virions
produced after drug takes effect are noninfectious). Productively
infected cells die at a rate per cell δ and plasma virions are cleared
at a rate c per virion. In this model however it is not taken into
account that there is a certain time lapse between viral entry
into a target cell and the production of new virus particles —
an intracellular delay. A number of authors, see in particular [3]-
[5], demonstrated that this can misrepresent the real process, and
therefore the intracellular delay has to be taken into consideration.
On the other hand, conversion of a newly infected cell into a pro-
ductively infected cell is a complicated multi-step process that can
last from one to several days, and therefore, fixed delays are not
realistic. A model containing a distributed intracellular delay was
suggested in [4]. According to this model equation (1) is replaced
by the following equation

dI

dt
= kT

∞∫

0

VI(t− t′)f(t′) dt′ − δI(t). (2)

Here the function f(t) — the density of the delay distribution —
has to be estimated from observations.

2. Parametric estimation. Gamma model

Equation (2) is a special case of convolution equations of the
first kind. Since methods developed in this work do not use specifics
of equation (2), we consider it in the general form, namely

∞∫

0

K(t− s)z(s)ds = u(t), (3)

where K(t) and u(t) are observed functions and z(t) is estimated
function (in our case — the density of the delay distribution).
Functions K(t) and u(t) are supposed to be integrable, non-negative
and that they tend to zero as t→ ±∞.
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For biological objects, a gamma-distribution is often a good
approximation for the delay distribution [6]. In this section we
suppose that z(t) is a gamma-density i. e. it has form

z(t) =
βα

Γ(α)
tα−1e−βt, t > 0; α > 0,β > 0.

In this case the problem is reduced to estimation of two parameters,
α and β. Suppose that functions K(t) and u(t) are observed with
random errors at time points t1, . . . , tn.

It was suggested in [4] to estimate the parameters using the
least square method. This, however, leads to minimization (with
respect to α and β) of the expression

S(α,β) =
n∑

j=1

(
βα

Γ(α)

∞∫

0

K(tj − s)sα−1e−βt ds− u(tj)

)2

,

and therefore one needs to solve strongly nonlinear equations, very
sensitive to measurement errors and to the replacement of the
continuous model by the discrete one. Here we present a method
which on the one hand is very simple and on the other hand is quite
stable with respect to measurement errors.

Let µz and σ2z be the expectation and the variance of the
probability density z(t). We have

α =
µ2

z

σ2
z

, β =
µz

σ2
z

.

Denote

µK =

∞∫

0

tK(t) dt

∞∫

0

K(t) dt

, µu =

∞∫

0

tu(t) dt

∞∫

0

u(t) dt

(4)

and

σ2K =

∞∫

0

(t− µK)2K(t) dt

∞∫

0

K(t) dt

, σ2u =

∞∫

0

(t− µu)2u(t) dt

∞∫

0

u(t) dt

. (5)
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Then
µz = µu − µK , σ2z = σ2u − σ2K

and hence

α =
(µu − µK)2

(σ2
u − σ2

K)
, β =

µu − µK

(σ2
u − σ2

K)
. (6)

Suppose that the points t1, . . . , tn form a uniform grid with the step
size h, and that this grid covers a region such that one may neglect
functions K(t) and u(t) outside this region. One can estimate

parameters µK , µu, σ2K and σ2u replacing integrals in (4) and (5) by
the corresponding integral sums, i. e. as follows

µ̂K =

n∑

i=1

tiK(ti)

n∑

i=1

K(ti)

, µ̂u =

n∑

i=1

tiu(ti)

n∑

i=1

u(ti)

and

σ̂2K =

n∑

i=1

(ti − µ̂K)2K(ti)

n∑

i=1

K(ti)

, σ̂2u =

n∑

i=1

(ti − µ̂u)2u(ti)

n∑

i=1

u(ti)

.

Substitution of these estimators in (6) then yields

α̂ =
(µ̂u − µ̂K)2

(σ̂2
u − σ̂2

K)
, β̂ =

µ̂u − µ̂K

(σ̂2
u − σ̂2

K)
.

Estimators α̂ and β̂ display quite a good performance. In Table 1

we present estimates of the standard error of estimators α̂ and β̂
obtained by simulation. It is supposed that

K(tj) = K0(tj) + ξj, u(tj) = u0(tj) + ηj

where K0(t) and u0(t) are the exact kernel and the exact right
hand side of equation (3), ξ1, . . . , ξn, η1, . . . , ηn are random errors.
Random variables ξ1, . . . , ξn as well as η1, . . . , ηn are independent
and identically distributed. ξi and ηi have normal distributions with
zero mean and variances σ2ξ and σ2η respectively. Variances of α̂

and β̂ are denoted by σ2α and σ2β. The kernel K(t) is normal

K(t) =
1√
2π
e−

(t−4)2

2
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Tab l e 1
Performance of the estimators

α β σξ/maxK(t) ση/maxu(t) σ̂α/α σ̂β/β

1 1 0.025 0.032 0.080 0.067

1 1 0.050 0.064 0.171 0.143

1 1 0.100 0.128 0.371 0.299

2 1 0.025 0.040 0.033 0.031

2 1 0.050 0.080 0.063 0.061

2 1 0.100 0.155 0.131 0.125

2 2 0.025 0.030 0.097 0.087

2 2 0.050 0.060 0.225 0.202

2 2 0.100 0.119 0.533 0.468

3 1 0.025 0.045 0.009 0.009

3 1 0.050 0.091 0.020 0.021

3 1 0.100 0.182 0.042 0.046

3 1 0.251 0.456 0.106 0.110

3 2 0.025 0.032 0.085 0.078

3 2 0.050 0.064 0.180 0.165

3 2 0.100 0.128 0.396 0.355

(this distribution can be considered as concentrated on the positive
half-line).

Note that for inverse problems of this kind, the accuracy ∼ √
ε

(as ε → 0) of the solution, where ε is the accuracy of the data, is
usually considered as a good result. Here the result is much better.

3. Nonparametric estimation of delay distribution

Parametric approach is very convenient for estimation of the de-
lay distribution but, using it, one can lose some important features
of the density to be estimated. For example, all gamma densities
are unimodal. While presence of two or more local maxima is, on
the one hand, quite possible and, on the other hand, can reflect
essential peculiarities of the process under consideration. In this
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section, we briefly consider nonparametric estimation of the delay
distribution.

Equation (3) is an integral equation of the first kind of the
convolution type. Methods of solution of such equations are well
developed and use regularization, since the problem is ill-posed.
Here we use the standard technique. However, the main part of
the solution — selection of the regularization parameter — can be
worked out using specifics of the applied problem under consider-
ation. In our case, parametric approximation can cause a loss of
important features of the density to be estimated, but it allows
one to estimate the measurement error or smoothness level of the
estimated density quite well.

Denote Fourier transforms of functions K(t), z(t) and u(t) by
the same letters but of the variable ω. Regularized solution has
form (see for example [7])

zδ(t) =
1

2π

∞∫

−∞

K(−ω)u(ω)e−iωt

|K(ω)|2 + δM(ω)
dω,

where M(ω) is an even nonnegative function, such that M(0) ≥ 0,
M(ω) > 0 for ω 6= 0 and M(ω) ≥ c > 0 for sufficiently large |ω|,
satisfying some regularity conditions (see [7] for details), and δ is
the regularization parameter (a positive number). One can put for
example

M(ω) = 1− e−cω
2
,

where c is chosen from the condition that functions exp(−cω2) and
K(ω) have approximately the same range.

If the deviation γ of the observed right hand side of equation (3)
u(t) from the exact one uT (t) (in some metric ρ(·, ·)) was known:
ρ(u,uT ) = γ, one could select the regularization parameter from
the following condition

ρ(K∗zδ,u) = γ.

This deviation is unknown, but can be estimated from the data.
We suggest to select the regularization parameter as follows. On
the first stage we use parametric approach and approximate z(t)
by a gamma-density. Parameters of the gamma-density α and β
are estimated using the technique described in the previous section.



84 A. Ushakova

Let ẑ(t) be the obtained estimate. Set

û(t) =

∞∫

0

K(t− s)ẑ(s) ds.

The measurement error (in L2 metrics) of the right hand side of
equation (3) is now estimated by

∆ =

∞∫

0

(û(t) − u(t))2 dt.

The regularization parameter δ is selected as solution of the equa-
tion

1

2π

∞∫

−∞

δ2M 2(ω)|u(ω)|2
(|K(ω)| + δM(ω))2

dω = ∆,

because the left hand side of this equation is

1

2π

∞∫

−∞

|K(ω)zδ(ω) − u(ω)|2 dω =

∞∫

0

(K∗z(t) − u(t))2 dt.

Another way to use a parametric start in nonparametric es-
timation of the delay distribution consists in estimation of some
functional of smoothness of the estimated density, for example
the total variation. This functional is estimated on the basis of
parametric approximation as it was described above.
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The paper is devoted to classification of 185 full prokary-
ote genomes using a modification of the compositional spectra
method. This modification suggests separate calculation of the
compositional spectra for coding and non-coding subsequences
of the genome. For each subsequence, the corresponding vector,
in Euclidian space, can be obtained using certain manipulations
of the compositional spectra. This allows analyzing the struc-
ture of genome and determining the most probable number of
genome clusters without any additional information. Our cluster-
ing method is based on the application of the external indexes of
partitions agreement and the number of the misclassified items
within repeated partitions. A biological justification, for the four
and the two letters alphabets, substantiates the appropriateness of
the outcomes acquired.

1. Background

With the increasing number of full genome sequences available,
new challenges are emerging in the field of computational biology.
The existence of a long single contig, representing the full genomic
content of a bacterial strain, allows the study of a genome as a
whole and not as a collection of genes. From this point of view, the
question is not to analyze particular features of a protein, or a fam-
ily of proteins, but to consider the global properties of the genetic
text of a bacterium. The first important step of a global genome
analysis is the description of general rules that allow the merging
of the different types of information within the physiological and
environmental contexts ([1] Rocha et al., 1988). In this matter, it is
interesting to compare between two of the main functional genomic
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structures -coding and non-coding parts of full genome sequences.
In prokaryotes, non-coding regions and genes seem to have evolved
in different regions ([2] Rogozin et al., 2002). The dynamic organi-
zation of non-coding DNA suggests a feedback loop which can in-
fluence codon usage and can stabilize the chromosome’s chromatin
pattern ([3] Holmquist, 1989). Hierarchical selection theories show
how selection can act on non-coding DNA, at the genome level, cre-
ating positional constrained DNA and contributing minimal genetic
load at the individual level [3–6]. Comparing genome sequences, in
particular discovering distances between sequences, is an important
issue in bioinformatics. Different formalisms have been introduced
to construct genome distances on the basis of various aspects of the
genome (see, [7]). Many approaches for genomes representation by
means of partial word frequencies can be found in the literature.
For example, the identification of a specific site [8] and the genome
annotation [9]. Article [10] determines, for each bacterium, a set
of oligonucleotides uniquely characterizing the organism. A method
for dendrograms construction using the word based approaches is
implemented in [11, 12].

One of the approaches for representing the structure of a
genome is termed Compositional Spectra (CS) [13, 14]. One of
the benefits of this approach is that it is capable to construct an
embedding of the genome sequences into a Euclidian space taking
into account the genome textual structure. Particularly, it makes
possible to estimate distances between whole genomes [15, 18]
and to provide classifications of the genomes via the conventional
clustering approaches (see, for example [15]).

In this paper, we apply a modification of the CS method, in
which spectra for coding and non-coding parts of the whole genome
are calculated separately. For each subsequence, the corresponding
vector in Euclidian space can be obtained using certain manip-
ulations with compositional spectra. This allows to analyze the
structure of genome and determine the most probable number of
genome clusters without any additional information. Our method for
determining the true number of clusters is based on an application of
the external indices of partitions agreement and the number of the
misclassified items within repetitive clustering of the same dataset.
Note that such methodology has been used in different versions
(see, for example [16, 17]). However, we would like to emphasize
that, to our knowledge, there has not been any similar effort made
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before, in such a context, where the clustering is completed, by
means of two different embeddings into geometrical spaces.

2. Methods

2.1. Compositional spectrum. In previous works [13, 14] the
notion of Compositional Spectrum (CS) has been introduced as
follows. Consider a word w of length L in the alphabet {A,T ,C,G}
and sequence S in the same alphabet. Let sequence S contain a
word x, which differs from word w no more than in r positions,
hence, word x is an imperfect occurrence of w in S. This approxi-
mate matching is referred as “r-mismatching”.

Let us look at a set W = {wi}, i = 1, . . . ,n, of n words of a
length L and compare its elements with a given sequence S. Denote
by mi the number of r-imperfect occurrences produced by the word
wi over the sequence. The set F (W ,S), composed by the relative
frequencies

fi =
mi

M
, i = 1, . . . ,n, M =

n∑

i=1

mi,

is named the “compositional spectrum” of the sequence S in consis-
tence with the set W . In CS-analysis, we consider sufficiently long
sequences S (≈ 103–105 bp) and usually use the values: n = 200
and r = 2. In the case of 4 letters alphabet we choose L = 10.
With the two-letter alphabet (A = C, T = G; purine/pyrimidine, or
R/Y), we take L = 20, so that the number of possible words will
be the same, as with the 4-letter alphabet for L = 10. To produce
a set Wwe employ a random number generator assuming equal
probabilities of appearance of each of the four (or two) symbols at
any current position. A distance between two sequences S and S ′ is
now being constructed as a distance between their spectra F (W ,S)
and F (W ,S′), which can be derived in many ways. It has been
shown [13, 14, 18, 19] that, from the biological point of view, the
most adequate distances between species, produce correlation type
functionals. The best tested functional, calculated for any two CS
in [19], was d = 1 − ρ, where ρ is the Spearman rank correlation
coefficient [20]. However, for this non metrical functional, it is
complicated to use clustering methods for classifying of points in
a metrical vector space. To overcome this difficulty, we suggest
to calculate for each genome, the set of its distances d to all the
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other genomes. Obviously, such a set can be viewed as a point in
the corresponding metrical space. Hence, standard Euclidian type
metrics describe, quite adequately, the distances between any pair of
species. In what follows such metrics is called integrative metrics.
It enables the applications of flexible partitioning procedures which
are based on the Euclidian distance. The validity of the techniques
described above is a consequence of the result, obtained in ([13,
14], because the distance between a pair of sequences, does not
depend on the selection of W .

2.2. Clustering. Organization of data into a set of similar
groups is an accepted and fundamental tool for data analysis. In data
mining, clustering is one of the two most widespread techniques
(the other one is classification) that are capable of providing a
categorization of a set of items. Clustering produces a partition,
of the data set, so that objects inside a cluster are similar to
one another, but are unalike objects in other clusters. A similarity
determines the group membership via a distance-like function which
evaluates the resembling between two data points. Most widespread
iterative clustering algorithms as k-means, k-medoids, EM and
PAM are carried out, as a rule, in three steps. An initialization
step is intended to set an initial partition. In the second step
the data is partitioned to “best” possible clusters. It is made by
assigning elements to clusters so that an objective function is
optimized. The third step compares the current partition to the
previous one. If the difference is less than the stopping parameter
then the algorithm ends else it returns to the second step. The
partitioning phase assigns a label to each item. This label identifies
the cluster to which it belongs. Generally, labels’ values do not
have specific meanings and can be permuted from one instance to
another. One of input parameters of a clustering iterative routine
is the suggested number of clusters in the considered dataset.
Estimation of this number represents an ill-posed problem of crucial
relevance in cluster analysis [21, 22]. For instance, the “correct”
number of clusters in a dataset can depend on the scale in which
the data is measured (see, for example, [23]). Generally speaking,
approaches to this problem apply two methodologies. The first is
based on geometrical features of partitions like within and between
cluster dispersions, and the second is base on the cluster stability
properties. For example, the Gap statistics method proposed in
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[24] can be cited as one of the approaches belonging to the first
methodology.

In our model the distances between the items are calculated
resting up different parts of a genome with the appropriate em-
beddings into Euclidian spaces. Thus, a comprehensible geometrical
interpretation of the objects is hardly attained. However, the du-
plicate clustering of each genome, by its distinct portions, yields
the model’s stability which is reflected by the consistency within
repeated clustering procedures.

External indices of partitions agreement. External indices
of partitions agreement yield a common tool for cluster stability
assessing. In this contest the Rand coefficient [25], the Jaccard
coefficient [21] and the Fowlkes and Mallows coefficient [26] can
be mentioned. The Clest approach [16] uses such coefficients for
the cluster validation determination. A method offered in [27]
characterizes a cluster stability event by the distribution of pair-
wise agreements between partitions, built by means of the external
indexes on sub-samples of the data. In this section we state several
facts about external indices of partitions agreement.

Let X = {x1, . . . ,xn} be a finite set. Consider a partition
Πk = {π1, . . . ,πk} of the set, i. e.,

π1 ∪ . . . ∪ πk = X and πi ∩ πj = ∅ if i 6= j.

The elements of the partition are named as clusters. The cal-
culation of the external indexes is based on cross-tabulation, or
contingency tables, which are composed by the co-occurrences of

objects belonging to clusters in partitions Π
(1)
r and Π

(2)
c of X. Two

partitions are identical if and only if every cluster in Π
(1)
r is also a

cluster in Π
(2)
c . Namely, the clusters in the partitions may only be

differently labeled in the clusters’ designates. Let us consider the
following labeling representation of a given partition:

C = {cij} =

{
1 if xi and xj belong to the same cluster xi 6= xj,

0 otherwise;

i, j = 1, . . . ,n.

Let C1 and C2be two binary matrices of this kind. For k, l = 0, 1
we introduce the quantities Nklof the number of items’ pairs which
take value kin C1 and value l in C2 respectively. For instance, N11
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is the number of pairs belonging to the same cluster in Π
(1)
r and to

the same cluster in Π
(2)
c . The following coefficients are often used:

• Rand
(
Π

(1)
r ,Π

(2)
c

)
=

N00 +N11

N00 +N10 +N10 +N11
(Rand coeffi-

cient);

• JD
(
Π

(1)
r ,Π

(2)
c

)
=

N11

N01 +N10 +N11
(Jaccard or Jain and

Dubes coefficient);

• FM
(
Π

(1)
r ,Π

(2)
c

)
=

N11√
(N11 +N10) (N11 +N01)

(Fowlkes–

Mallows coefficient).

We ignore here the trivial cases where the denominators equal
to zero. Due to the fact Nkl are nonnegative, all introduced indices
receive values in the interval [0, 1]. Two partitions coincide if and
only if N10 = N01 = 0. When partitions are equal, and N11 6= 0,
then all indices achieve their maximal value 1. An external index is
frequently standardized in such a way that its expected value is 0,
if the partitions are random, and 1 when they correspond perfectly.
The general formula is offered to standardize an index is:

Ind′ =
(Ind− E (Ind))

(Indmax − E (Ind))
.

Particularly, the adjusted Rand [28] index equals:

Rand′ =
N11 − (N11 +N10) (N11 +N01) /N00

(N11 +N10 +N11 +N01) /2− (N11 +N10) (N11 +N01) /N00
.

(1)
The most popular null model assumes that the mentioned

contingency table is created from the generalized hyper-geometric
distribution and that the two partitions are mutually independent.
In this case the adjusted index has to be zero. Values close to zero
specify that from each partition, nothing can be forecasted about
the other.

The number of the misclassified items. Another similarity
measure, between two partitions, has been offered in [17, 29].
This measure can be defined as the quantity of the misclassified

items, between the two partitions Π
(1)
k and Π

(2)
k , of the same set X.

An element is considered misclassified if it belongs to different

clusters in Π
(1)
k and Π

(2)
k . Such elements can be described in terms

of the labeling functions α1 and α2, from X to Ck = [1, . . . , k],
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defined as αi(x) = c, if and only if x ∈ πc, i = 1, 2, c = 1, . . . , k.
One of the problems, which usually arise here, is induced by the
inherent permutation symmetry of clustering algorithms. Explicitly,
the cluster labels are arbitrarily permuted. A matching between the
labels can be found by resolving the task

Dk(α1,α2) = min
ψ∈Ψ∗

∑

x∈X

χ(α1(x) 6= ψ(α2(x))), (2)

where Ψ∗ is the set of all possible permutations of Ck and χ
is an indicator function of the event α1(x) 6= ψ(α2(x)). Note, we
do not need to test all of k! possible permutation, because this
problem can be expressed as a partial case of the minimum weighed
perfect bivariate matching problem. Computational complexity for
solving of this problem by the well known Hungarian method (see,
[30]) is O(k3). The range of values of Dk(α1,α2) depends on k.
Consequently, in order to compare Dk(α1,α2), for different values
of k, normalizing must be applied. Here, it is performed by

D̃k(α1,α2) =
Dk(α1,α2)

E(Dk(ρ1, ρ2))
, (3)

where ρ1 and ρ2 are random independent labelings uniformly dis-
tributed over Ck. Normalizing yields values of Dk(α1,α2) indepen-
dent of k. The expectation in the denominator can be calculated by
simulation.

Algorithm description. Let us suppose that there are two
embedding functions, E1 and E2 of the set X into the Euclidian
space Rm. Assume that a clustering algorithm Cl is available.
Among the input parameters of the algorithm a clustered set and a
supposed number of clusters are included. The output is the items
labels. Our algorithm can be described in the following form:

1. for k = 2 to k∗

2. for t = 1 to T

3. α1(x) = Cl (E1(X), k)

4. α2(x) = Cl (E2(X), k)

5. Calculate the value of an adjusted external index
Ind′k(t) according to α1 and α2

6. Calculate the normalized quantity of misclassified

items D̃k(α1,α2)(t) according to (2) and (3)

7. end for
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8. In′k = mean(Ind′k)

9. Dk = mean(D̃k(α1,α2))

10. end for

11. The true number of clusters is chosen according to the
value of k yielding the maximum of the index In′k or the
minimum of Dk.

Here:

• k∗ is a predefined parameter, which designates the maximal
number of clusters to be tested;

• T is the iteration number of the indexes averaging.

It is well known, that the outcomes of an iterative clustering
algorithm are strongly dependent on an initial partition. In order to
avoid this difficulty, we average the indexes values. Note, that it is
expected that the two criteria should yield the same value of k.

Clustering outcomes. We demonstrate the performance of
our approach by analyzing a dataset consisting of 185 complete
prokaryotic genomes. For the purposes of the study, every genome
is transformed into two pseudo-sequences. The first one presents
all coding sequences (CDS) and has been obtained by conjunc-
tion with the CDS preserving the order of genes and converting
complementary genes to the correct “sense” format. The second
pseudo-sequence Sn was obtained by conjugation of all non-coding
fragments. In order to avoid artifacts, nonsense symbols out of the
alphabet {A,T ,C,G} were inserted to separate gene fragments.
Such insertions prevent considering non-existing words in the
overall calculation. Furthermore, every genome is transformed into
two CS yielding four possible distances D4(CDS) and D4(Sn), for
the 4-letter alphabet, and D2(CDS) and D2(Sn) for the 2-letter
purine/pyrimidine alphabet. Thus we get for the four-letter alphabet
and a random set W4 two spectra F (W4,CDS) and F (W4,Sn).
Similarly, for the two-letter alphabet, and a set of two-letter words
W2, two spectra F (W2,CDS) and F (W2,Sn) are defined. Next, the
distances between spectra built on the same alphabet and the same
genome’s part are calculated via the Spearman correlations, as it
mentioned earlier. Hence, four distances matrices D4(CDS) and
D4(Sn), for the 4-letter alphabet, and D2(CDS) and D2(Sn), for the
2-letter purine/pyrimidine alphabet, are resulted.

We represent each genome four times as a vector having 185
dimensions which are the distances to each of the genomes. We fur-
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ther consider two pairs of embeddings, produced by the coding and
the non-coding parts, for the 4-letter alphabet and for the 2-letter
alphabet, respectably. As it was mentioned above, such an approach
enables to obtain repeated clusterizations of the genome set.

For the clusterization we use the regular k-means algorithm
based on the squared Euclidian distance. The Rand adjusted external
index is employed for the partitions’ similarity characterization.
An application of our algorithm for the determination of “true”
number of clusters, with the parameters k∗ = 9 and T = 200,
clearly indicates the presence of three clusters in all considered
datasets. Typical graphs of the Rand adjusted external index and the
normalized quantity of the misclassified items are presented below.

Fig. 1. Graph of the adjusted Rand coefficient

The final partitions for 3 clusters have been found by means of
the regular k-means algorithm applying an additional initialization
procedure offered in [19]. The initialization procedure eliminates
the influence of a random starting partition and stabilizes the
clusterization process.

3. Some Biological Aspects of Cluster Classification

In this section we compare partitions obtained above to certain
types of biologically meaningful bacteria classifications. We are
going to discuss the biological meaning of the obtained results
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Fig. 2. Graph of the normalized quantities of the misclassified items

from the point of view of their biological relevance. Specifically,
we compare partitions built on different alphabets and different
genomes parts in order to point out the connection between these
clustering solutions and several genomes parameters. We test four
types of the distance on set 185 of genomes. Each one of them has
been divided into coding and non-coding parts and for each part two
spectra have been calculated. The 4-letters alphabet (A,T ,C,G)
and the reduced 2-letters alphabet (A = G,T = C) are used. In
Table 1 the quantities of the clusters, in the final optimal partition,
are presented.

Table 2 shows that the portion of the misclassified items is very
small, approximately 12%. This fact demonstrates high agreement

Tab l e 1
Partition of the set of 185 bacteria based on the standard 4 letters

alphabet, for the coding (cod) and the non-coding (non) parts and the
partition based on the two-letter (purine/pyrimidine) alphabet for the

coding (pcod) and for the non-coding parts

1 2 3

Cod 53 99 36

Non 47 105 36

Pcod 63 75 50

Pnon 80 48 60
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Tab l e 2
Intersections of the partitions, obtained based on coding (cod) and

non-coding (non) genome parts, for the four-letter alphabet

1 non 2 non 3 non

1 cod 45 0 8

2 cod 0 96 3

3 cod 2 9 25

between the obtained partitions and their biological meaning. We
think that the significant similarity among partitions, based on
the coding and the non-coding genomes parts, using the 4 letters
alphabet, is very interesting. In Table 3 the characteristics of the
purine/pyrimidine alphabet are exhibited.

Tab l e 3
Intersection of the partitions, obtained based on coding (pcod) and

non-coding (pnon) genome parts, for the two-letter alphabet

1 pnon 2 pnon 3 pnon

1 pcod 50 5 8

2 pcod 30 43 2

3 pcod 0 0 50

In this case, cluster 2, of pcod, includes cluster 2 of pnom and
a significant part of the species of cluster 1 of pnom. We observe
approximately 24% of misclassified items. However, the Chi-square
values are 233.42 and 195.16 for Tables 2 and 3, accordingly. The
suitable P-values are less than 0.001, in both cases, hence, the
correlation between the partitions are significant at a level of 0.001.
I.e. the presented correlations are not random.

Thus, we concentrate only on the following cases:

• the coding part of the 4-letter alphabet;

• the coding and non-coding part the 2-letter alphabet.

The corresponding partitions are presented in Appendix. We
would like to note that the partition’s comparison exhibits a con-
siderable dissimilarity between the solutions.

The properties of the obtained clusters are checked with respect
to two ecological parameters (oxygen and temperature) and Ar-
chaea/Bacteria classification. In order to estimate the compatibility
of the parameters with the partitions, we also consider random
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partitions. Namely, we start from a particular partition and then
we randomly distribute the species, keeping the number of the sets
and the number of elements in each set constant. This procedure
is repeated 10,000 times. Having obtained the simulated sample we
compare the actual factor values to the simulated null hypothesis
distribution. Evidence on the non randomness of a factor value is
obtained when an actual point is located outside the simulated area.

Oxygen. Bacteria are divided into three groups based on their
reaction to oxygen. Aerobic bacteria need oxygen for their contin-
ued growth and existence. The second group — Anaerobic bacteria
cannot absorb oxygen. The third group consists of the Facultative
Anaerobes, which prefer growing in the presence of oxygen, but
can continue to grow without it. Each cluster may be characterized
by a three-dimensional vector (x, y, z) of the relative frequencies of
the bacteria belonging to each of these types. It lays on a simplex
x+ y + z = 1 that makes possible to consider only two dimensional
projections of the sets, say (y, z). Therefore, the test results are
presented on the Anaerobic-Facultative Anaerobic plane (Fig. 3).

Figure 3 shows that partitions created by the coding sequences
are not random for both alphabets. I. e. appropriate points are
located outside of the simulated area. However, for the partitions
built on the non-coding sequences the null hypothesis, on the
partition randomness, is not rejected. Therefore, it may be assumed
that the effect of the oxygen-consumption factor on the DNA
sequence is manifested at the level of the coding part of the genome.
However, the non-coding genome part appears to be independent of
this parameter in the case of the purine-pyrimidine alphabet. This
conclusion is supported by the observed random bacteria partition,
which is based on this part of the genome.

Temperature. An important characteristic of a bacterium is
the temperature at which the bacterium grows most rapidly. The
bacteria growing at a fast pace under heat are called thermopiles or
hyper-thermopiles. The others are called — mesophilic. In Table 4
we present results of the permutation test on for the temperature
parameter.

The frequencies of the thermopiles according to

(a) the coding parts genomes at the 4-letter alphabet;

(b) the coding parts genomes at the 2-letter alphabet;

(c) the non-coding parts genomes at the 2-letter alphabet.

4
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Fig. 3. Results of the permutation test applied for an estimation of the non-randomness of the percent of anaerobic organisms
for each of the clusters. The X axis represents the Anaerobic percent and the Y axis represents the Facultative Anaerobic. The

allocated circle corresponds to the actual partition
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Tab l e 4
Results of the permutation test applied for an estimation of the

non-randomness of the percent of the thermopiles for each of the clusters

Cluster Actual value min Max < a. v. > a. v.

(a)

1 0.104 0.021 0.313 3562 6438

2 0.129 0.011 0.172 8827 1173

3 0.133 0.067 0.533 5148 4852

(b)

1 0 0 0.255 5 9995

2 0.045 0.015 0.224 149 9851

3 0.347 0.02 0.286 10000 0

(c)

1 0.03 0.015 0.224 40 9960

2 0.024 0 0.317 259 9741

3 0.288 0.017 0.254 10000 0

The number of clusters is indicated in the first column. The
second column presents the relative frequencies of the thermophilics
in the cluster (actual value (a.v.)). The simulated extreme values are
given in the third and fourth columns. The columns named “< a. v.”
and “> a. v.” exhibit the quantities of the cases for which the
simulated value is less or more than the actual one, correspondently.
It can be concluded, that the partition based on the 4 letter alphabet
is practically not correlated with the temperature factor. Oppositely,
the 2 letter alphabet based partition demonstrates high correlation
with the mentioned factor for the coding and the non-coding parts
of the genome.

Archaea classification. In this step, a permutation test has
been applied to compare the Archaea classification of the Kingdom
Bacteria. As it is shown in Table 5, the Archaea set is not detected
by means of the 4-letter alphabet. However, the calculations based
on the two-letter alphabet exhibit a significant non-randomness
of the Archaea distribution. This result corresponds to the ones
depicted in our recent publications [15, 18].

4*
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Tab l e 5
Results of the permutation test applied for the estimation of the

non-randomness of the Archaea percent. The columns’ headings in Table 5
are identical to those of Table 4

Cluster Actual value min Max < a. v. > a. v.

(a)

1 0.096 0 0.288 4076 5924

2 0.141 0.03 0.192 9234 766

3 0.045 0 0.455 2567 7433

(b)

1 0 0 0.254 1 9999

2 0.041 0.014 0.205 123 9877

3 0.347 0 0.265 10000 0

(c)

1 0 0.025 0.213 10000 0

2 0.065 0 0.283 2196 7804

3 0.288 0 0.237 10000 0

4. Discussion

In this study we present a new method for genome sequences
classification using a novel two-step procedure. In the first step,
pair-wise comparison of elements is performed on the basis of
a certain appropriate functional. Generally speaking, the obtained
numerical data are not distances from the point of view of standard
metrical requirements. At the second stage each element is matched
with all other elements. It has been found that, regardless of the
alphabet used, and of the functional significance of the sequence,
the obtained number of clusters is the same in all partitions. It
has also been shown (see Table 2) that, in the case of the 4-
letter alphabet, based on the CS of coding and non-coding parts,
the cluster structures are rather similar. Our result suggests that
the pair-wise distances for the coding and non-coding parts of the
genome for the 4-letter alphabet are more “consistent”, than those
for the 2-letter alphabet.

Therefore, the direct use of clustering methods, which are often
applicable only for metric spaces, is improper. At the second stage
of the algorithm, we match each element of the considered set
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Fig. 4. The correspondence between the distances based on coding and non-coding
genome parts in the case of the 4-letter alphabet. Axis X: pair-wise distances
based on the coding genome parts. Axis Y — the same, for the non-coding parts

with the vector of its pseudo-distances to all the other elements.
This vector will be considered to be an element of a metrical
space, which validates the use of the cluster analysis, the desired
technique of the pair-wise data estimation being retained. In this
work, the pair-wise comparison is based on the CS of sequences and
performed by calculating the Spearman coefficient, which is not a
metric. The resulting vectors (defined above) are used as elements
of the Euclidian space for further clustering. It has been found that,
regardless of the alphabet used and of the functional significance of
the sequence, the optimal number of clusters is 3 in each partition.
It has also been shown (see Table 2) that the cluster structures,
based on the CS of coding and non-coding parts of genomes are
rather similar to each other in the case of the 4-letter alphabet.
In accordance with this, the corresponding distances based on the
Spearman coefficient, also correlate with each other (Fig. 4). Our
result suggests that the pair-wise distances for the coding and
non-coding parts of the genome for the 4-letter alphabet are more
“consistent”, than those for the 2-letter alphabet, in the latter case
the cluster structures based on the coding and non-coding parts
being quite different (Table 3).

The greater difference between the cluster structures for the
coding and non-coding genome parts in the case of the 2-letter
alphabet in contrast to the virtual coincidence of these structures in
the case of the 4-letter alphabet is not significant from the viewpoint
of a formal criterion, being, however, substantiated by the biolog-
ically significant cluster analysis. Indeed, we have shown that the
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pair-wise distances between the coding parts of bacteria correlate
with the level of oxygen consumption regardless of the alphabet
chosen, while the pair-wise distances between the non-coding parts
for the 2-letter alphabet are independent of this parameter. Perhaps,
this is connected to the mechanisms the protein resistance to
“oxidative stress”. On the other hand, the bacteria’s temperature
dependence does not correlate, with genome distances, only for the
4-letter alphabet. The same phenomenon follows from the analysis
of the Archae/Bacteria genome classification. The obtained result
is well coordinated with the biological context of the problem even
though partitions have been received without resorting to biological
criteria.
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Appendix

The table of all of three partitions. In the first column the name
of a bacteria, in the second — taxonomic class. In following three
columns in figure number of cluster accordingly in partitions (1) a
code part genomes on the basis of 4-letter alphabet and (2) the two-
letter alphabet and (3) on the basis of non-coding parts genomes is
designated at two-letter alphabet. The table is ordered on the first
partition, and inside of these clusters — under names of bacteria.

Aeropyrum pernix K1 Thermoprotei 1 3 3

Agrobacterium tumefaciens chromosome I Alphaproteobacteria 1 2 1

Agrobacterium tumefaciens chromosome II Alphaproteobacteria 1 2 1

Agrobacterium tumefaciens str. C58
(Dupont) chr I

Alphaproteobacteria 1 2 1

Agrobacterium tumefaciens str. C58
(Dupont) chr II

Alphaproteobacteria 1 2 1

Bifidobacterium longum NCC2705 Actinobacteria 1 2 2

Bordetella bronchiseptica RB50 Betaproteobacteria 1 2 2

Bordetella parapertusis 12822 Betaproteobacteria 1 2 2

Bordetella pertussis Tohama I Betaproteobacteria 1 2 2
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Bradyrhizobium japonicum USDA 110 Alphaproteobacteria 1 2 2

Brucella melitensis 16M chromosome I Alphaproteobacteria 1 2 1

Brucella melitensis 16M chromosome II Alphaproteobacteria 1 2 1

Brucella suis 1330 chromosome I Alphaproteobacteria 1 2 1

Brucella suis 1330 chromosome II Alphaproteobacteria 1 2 1

Caulobacter crescentus CB15 Alphaproteobacteria 1 2 1

Chlorobium tepidum TLS Chlorobia 1 2 1

Chromobacterium violaceum ATCC 12472 Betaproteobacteria 1 2 2

Corynebacterium efficiens YS-314 Actinobacteria 1 2 1

Dechloromonas aromatica RCB Betaproteobacteria 1 2 1

Deinococcus radiodurans R1 chromosom II Deinococci 1 2 2

Deinococcus radiodurans R1 chromosome 1 Deinococci 1 2 1

Desulfovibrio vulgaris subsp. vulgaris str.
Hildenborough

Deltaproteobacteria 1 2 2

Geobacter metallire GS-15 Deltaproteobacteria 1 1 1

Geobacter sulfurred PCA Deltaproteobacteria 1 1 1

Gloeobacter violaceus PCC 7421 Cyanobacteria 1 2 1

Gluconobacter oxydans 621H Alphaproteobacteria 1 2 1

Haloarcula marismortu ATCC 43049 Euryarchaeota 1 2 2

Halobacterium salinarum sp. NRC-1 Halobacteria 1 2 2

Leifsonia xyli subsp. xyli str. CTCB07 Actinobacteria 1 2 2

Mesorhizobium loti MAFF303099 Alphaproteobacteria 1 2 2

Methanopyrus kandleri AV19 Methanopyri 1 3 3

Methylococcus capsulatus str. Bath Gammaproteobacteria 1 2 1

Mycobacterium avium subsp. paratuberculo
str. k10

Actinobacteria 1 2 2

Mycobacterium bovis subsp. bovis
AF2122/97

Actinobacteria 1 2 2

Mycobacterium leprae TN Actinobacteria 1 2 2

Mycobacterium tuberculosis CDC1551 Actinobacteria 1 2 2

Mycobacterium tuberculosis H37 Rv Actinobacteria 1 2 2
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Natronomonas pharaonis DSM 2160 Euryarchaeota 1 2 2

Nitrobacter winogradsky Nb-255 Alphaproteobacteria 1 2 1

Nocardia farcinic IFM 10152 Actinobacteria 1 2 2

Pelodictyon luteolum DSM 273 Chlorobia 1 1 1

Propionibacterium acnes KPA171202 Actinobacteria 1 2 2

Pseudomonas aeruginosa PAO1 Gammaproteobacteria 1 2 1

Pseudomonas putida KT2440 Gammaproteobacteria 1 2 2

Pseudomonas syringae pv. tomato str.
DC3000

Gammaproteobacteria 1 2 2

Ralstonia solanacearum GMI 1000 Betaproteobacteria 1 2 2

Rhodopseudomonas palustris HaA2 Alphaproteobacteria 1 2 2

Sinorhizobium meliloti 1021 Bacilli 1 2 1

Streptomyces avermitilis MA-4680 Actinobacteria 1 2 2

Streptomyces coelicolor A3(2( Actinobacteria 1 2 2

Synechococcus sp. WH 8102 Chroococcales 1 2 1

Thermobifida fusca YX Actinobacteria 1 2 1

Thermus thermophilus HB2 Deinococci 1 3 3

Aquifex aeolicus VF5 Aquificae 2 3 3

Archaeoglobus fulgidus DSM 2661 Archaeoglobi 2 3 3

Bacillus anthracis str. Ames Bacilli 2 1 1

Bacillus anthracis str. Ames 0581 (’Ames
Ancestor’)

Bacilli 2 1 1

Bacillus cereus ATCC 14579 Bacilli 2 1 1

Bacillus halodurans Bacilli 2 1 1

Bacillus subtilis subsp. subtilis str. 168 Bacilli 2 1 1

Bacteroides thetaiotaom VPI-5482 Bacteroides 2 1 1

Borrelia burgdorferi B31 Spirochaetes 2 3 3

Buchnera aphidicola str. Bp (Baizong
pistacia)

Gammaproteobacteria 2 1 3

Buchnera aphidicola str. Sg (Schizap
graminum)

Gammaproteobacteria 2 3 3



On linguistic classification of bacterial genomes 107

Buchnera aphidiocola str. APS
(Acyrthosiphon pisum)

Gammaproteobacteria 2 1 3

Campylobacter jejuni subsp. jejuni NCTC
11168

Epsilonproteobacteria 2 3 3

Candidatus Blochmanni floridanus Gammaproteobacteria 2 1 2

Carboxydothermus hydrogenoformans
Z-2901

Clostridia 2 3 3

Chlamydia muridarum Nigg Chlamydiae 2 3 3

Chlamydia trachomatis D/UW-3/CX Chlamydiae 2 3 3

Chlamydophila caviae GPIC Chlamydiae 2 3 3

Chlamydophila pneumoniae AR39 Chlamydiae 2 3 3

Chlamydophila pneumoniae CWL029 Chlamydiae 2 3 3

Chlamydophila pneumoniae J138 Chlamydiae 2 3 3

Clostridium acetobutylicum ATCC 824 Clostridia 2 3 3

Clostridium perfringens st. 13 Clostridia 2 3 3

Colwellia psychrerythraea 34H Gammaproteobacteria 2 1 1

Desulfotalea psychrophila LSv54 Deltaproteobacteria 2 1 1

Ehrlichia canis str. Jake Alphaproteobacteria 2 1 2

Ehrlichia ruminanti str. Gardel Alphaproteobacteria 2 1 2

Enterococcus faecalis V583 Bacilli 2 1 1

Fusobacterium nucleatum subsp. nucleatum
ATCC 25586

Fusobacteria 2 3 3

Haemophilus ducreyi 35000HP Gammaproteobacteria 2 2 1

Haemophilus influenzae Rd KW20 Gammaproteobacteria 2 1 1

Helicobacter hepaticus ATCC 51449 Epsilonproteobacteria 2 3 3

Helicobacter pylori 26695 Epsilonproteobacteria 2 3 3

Helicobacter pylori J99 Epsilonproteobacteria 2 3 3

Lactobacillus johnsonii NCC 533 Bacilli 2 1 1

Lactococcus lactis subsp. lactis I11403 Firmicutes 2 1 1

Leptospira interrogan serovar Copenhagen
chromoosme II

Spirochaetes 2 3 3

Leptospira interrogan serovar Copenhagen
chromosome I

Spirochaetes 2 3 3
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Leptospira interrogan serovar lai str. 56601
chromosome I

Spirochaetes 2 3 3

Leptospira interrogan serovar lai str. 56601
chromosome II

Spirochaetes 2 3 3

Listeria innocua Clip11262 Bacilli 2 1 1

Listeria monocytogenes EGD-e Bacilli 2 1 1

Listeria monocytogenes str. 4b F2365 Bacilli 2 1 1

Mesoplasma florum L1 Mollicutes 2 1 1

Methanobacterium thermoautotrophicus
str. Delta H

Methanomicrobia 2 3 3

Methanococcus jannaschii DSM 2661 Methanoccoci 2 3 3

Methanococcus maripaludis S2 Methanococci 2 3 3

Methanosarcina acetivorans C2A Methanomicrobia 2 3 3

Methanosarcina barkeri str. fusaro Methanomicrobia 2 3 3

Methanosarcina mazei Go1 Methanomicrobia 2 3 3

Mycoplasma gallisepticum R Mollicutes 2 1 1

Mycoplasma genitalium G-37 Mollicutes 2 1 1

Mycoplasma mobile 163K Mollicutes 2 3 3

Mycoplasma mycoides subsp. mycoides SC
str. PG1

Mollicutes 2 1 3

Mycoplasma penetrans HF-2 Mollicutes 2 1 1

Mycoplasma pneumoniae M129 Mollicutes 2 1 1

Mycoplasma pulmonis UABCTIP Mollicutes 2 3 3

Nanoarchaeum equitans Kin4-M Nanoarchaeota 2 3 3

Nostoc sp. PCC 7120 Nostocales 2 1 3

Oceanobacillus iheyensis HTE831 Bacilli 2 1 1

Onion yello phytoplasma OY-M Mollicutes 2 1 1

Parachlamydia sp. UWE25 Chlamydiae 2 3 3

Pasteurella multocida subsp. multocida str.
Pm70

Gammaproteobacteria 2 1 1

Photobacterium profundum SS9
chromosome I

Gammaproteobacteria 2 2 2
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Photobacterium profundum SS9
chromosome II

Gammaproteobacteria 2 2 2

Photorhabdus luminescens subsp.
laumondii TTO1

Gammaproteobacteria 2 2 1

Picrophilus torridus DSM 9790 Thermoplasmata 2 3 3

Prochlorococcus marinus subsp. marinus
str. CCMP1375

Prochlorophytes 2 2 3

Prochlorococcus marinus subsp. pastoris
str. CCMP1986

Prochlorophytes 2 3 3

Psychrobacter arcticus 273-4 Gammaproteobacteria 2 2 2

Pyrococcus abyssi GE5 Thermococci 2 3 3

Pyrococcus furiosus DSM 3638 Thermococci 2 3 3

Pyrococcus horikoshii OT3 Thermococci 2 3 3

Rickettsia conorii str. Malish 7 Alphaproteobacteria 2 1 1

Rickettsia felis URRWXCal2 Alphaproteobacteria 2 1 3

Rickettsia prowazekii str. MadridE Alphaproteobacteria 2 1 2

Rickettsia typhi str. Wilmington Alphaproteobacteria 2 1 2

Staphylococcus aureus subsp. aureus Mu50 Bacilli 2 1 1

Staphylococcus aureus subsp. aureus N315 Bacilli 2 1 1

Staphylococcus aureus subsp. aureus str
MW2

Bacilli 2 1 1

Staphylococcus epidermidis ATCC 12228 Firmicutes 2 1 1

Staphylococcus saprophyticus subsp.
saprophyticus ATCC 15305

Bacilli 2 1 1

Streptococcus agalactiae 2603V/R Bacilli 2 1 1

Streptococcus agalactiae NEM316 Lactobacillales 2 1 1

Streptococcus mutans UA159 Bacilli 2 1 1

Streptococcus pneumoniae R6 Bacilli 2 1 3

Streptococcus pneumoniae TIGR4 Bacilli 2 1 3

Streptococcus pyogenes M1 GAS (SF370) Bacilli 2 1 1

Streptococcus pyogenes MGAS315 Bacilli 2 1 1

Streptococcus pyogenes MGAS8232 Bacilli 2 1 1

Streptococcus pyogenes SSI-1 Bacilli 2 1 1
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Streptococcus thermophilus CNRZ1066 Bacilli 2 1 1

Sulfolobus acidocalda DSM 639 Crenarchaeota 2 3 3

Sulfolobus solfataric P2 Thermoprotei 2 3 3

Sulfolobus tokodaii str. 7 Thermoprotei 2 3 3

Thiomicrospira denitrificans ATCC 33889 Epsilonproteobacteria 2 3 3

Treponema denticola ATCC 35405 Spirochaetes 2 3 3

Wolbachia endosymbiunt of Drosophila
melanogaster

Alphaproteobacteria 2 1 1

Wolinella succinogenes Epsilonproteobacteria 2 3 3

Bdellovibrio bacteriovorus HD100 Deltaproteobacteria 3 3 3

Corynebacterium diphtheriae NCTC 13129 Actinobacteria 3 2 1

Corynebacterium glutamicum ATCC 13032 Actinobacteria 3 2 3

Coxiella burnetii RSA 493 Gammaproteobacteria 3 1 1

Erwinia carotov subsp. atrosep SCRI104 Gammaproteobacteria 3 2 2

Escherichia coli CFT073 Gammaproteobacteria 3 2 2

Escherichia coli K-12 Gammaproteobacteria 3 2 2

Escherichia coli O157-H7 Gammaproteobacteria 3 2 2

Escherichia coli O157-H7 EDL933 Gammaproteobacteria 3 2 2

Geobacillus kaustophilu HTA426 Firmicutes 3 1 1

Idiomarina loihiensis L2TR Gammaproteobacteria 3 2 1

Lactobacillus plantarum WCFS1 Bacilli 3 2 2

Mannheimia succiniciproducens MBEL55E Gammaproteobacteria 3 1 1

Neisseria meningitidis MC58 Betaproteobacteria 3 2 1

Neisseria meningitidis Z2491 Betaproteobacteria 3 2 3

Nitrosococcus oceani ATCC 19707 Gammaproteobacteria 3 1 1

Nitrosomonas europaea ATCC 19718 Betaproteobacteria 3 2 1

Nitrosospira multiformis ATCC 25196 Betaproteobacteria 3 1 1

Pelobacter carbinolic DSM 2380 Deltaproteobacteria 3 1 1

Pirellula sp. 1 (Rhodophirellula baltica
SH 1)

Planctomycetacia 3 2 1

Porphyromonas gingivalis W83 Bacteroides 3 1 1
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Prochlorococcus marinus str. MIT 9313 Prochlorophytes 3 1 1

Pyrobaculum aerophilum IM2 Crenarchaeota 3 3 3

Rhodopirellula baltica SH 1 Planctomycetes 3 2 1

Salmonella enterica subsp. enterica serovar
Typhi str. CT18

Gammaproteobacteria 3 2 2

Salmonella enterica subsp. enterica serovar
Typhi Ty2

Gammaproteobacteria 3 2 2

Salmonella typhimuriu LT2 Gammaproteobacteria 3 2 2

Shewanella oneidensis MR-1 Gammaproteobacteria 3 2 1

Shigella flexneri 2a str. 2457T Alphaproteobacteria 3 2 2

Shigella flexneri 2a str. 301 Alphaproteobacteria 3 2 2

Thermococcus kodakaraensi KOD1 Euryarchaeota 3 3 3

Yersinia pestis biovar Mediaeva str. 91001 Gammaproteobacteria 3 2 2

Zymomonas mobilis subsp. mobilis ZM4 Alphaproteobacteria 3 1 1
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The orthographic views are constructed from a moving sensor,
either a distancemeter or a camera, in an automatic fashion
using estimation techniques. The raw distance measurements are
processed via a filter which generates estimates of the part dimen-
sions and position. The fact that the outcome of the estimation
(measurement) process is a set of explicit contour equations is
suitable for creating orthographic views using variational geome-
try representation.

1. Introduction

The work deals with creating an automatically generated 2D
orthogonal views. Theoretically not only that one can reconstruct
the full model directly from measurements, but both the object
and the sensor may be moving with. However, a typical scenario
is a stationary object and measurements taken from orthogonal
directions. The measurements can be in-plain laser, orthogonal laser
or a camera, and all three cases are discussed.

The main idea in creating the views is that the object consists
of primitives with known shape but with unknown parameters, i. e.
a cylinder with unknown dimensions. Other quantities that are un-
known in the process are the position and orientation of the object.
Such problems have been addressed in the past for other purposes,
e. g. [3], or using different approach [3, 17]. The methodology of
the identification in this paper follows the one in [2]. When the
measurements are obtained by a camera, a preliminary step is edge
detection. Then there exist algorithms that reconstruct position and
orientation using identified objects in consecutive images [7].
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With the raw measurements provided by either the laser dis-
tancemeter or the camera, the construction of the image in the
pre-specified shape becomes a non-linear estimation problem. This
is one of the most addressed problems with numerous approaches
ranging from standard Least Squares, through Gradient Weighted
Least Squares [1], to the more robust M-estimators [9]. The most
common approach for estimation from a sequence of measurements
is the use of the the Kalman Filter, which is the optimal estimator
for linear problems, on a linearized model about the prior estimate.
This is the Extended Kalman Filter (EKF) [5, 14]. The Iterative
Extended Kalman Filter (IEKF) [10] uses repeated linearizations to
increase the accuracy. The recent method of Noise Updated Iterative
Extended Kalman Filter (IEKF) [2] goes one step further and uses
the identified noise in the linearization. This has a strong effect in
cases where the noise effect is strongly non-linear.

A number of approaches have been developed over the past
decades to interpret user-supplied orthographic views. These ap-
proaches are inputs for reconstruction of a 3D object models. The
main reconstruction approach is the wireframe — B-rep bottom up
approach [4, 8, 12, 13]. We propose an automatic procedure [15,16]
for representing the experimental measurements by elements of
variational geometry. In particular, the main novelty in the ap-
proach is its use of understanding the nature of 2D engineering
drawings. This understanding is translated into an actual algorithm
by means of topological relations and dimensional scheme analysis.

2. Creating the 2d Orthographic views

We assume that the measurement is planar. One possibility is
an in-plain laser measurement shown schematically in Fig. 1. At
each measurement instant the sensor is in a known position and
orientation, up to small uncertainty which is modeled as noise.
Then the distance to the contour of the object is measured, again
with a certain noise. In [2] the most general situation where the
situation is 3D and the object is moving as well was considered,
but here we assume that the problem is planar and that the object
is stationary, yet in an unknown position. Treating the position of
the object as unknown is appealing from a practical point of view
because it eliminates the need for registration and/or initialization.

The general shape of the object, or parts of the object, is
assumed to be known, but not its parameters. In body coordinates
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Fig. 1. General setting of the object and the sensor

(see Fig. 1), the contour is given by

g(xb1,x
b
2,ϑ) = 0, (2.1)

where ϑ is a vector of parameters. For example, in a circle this
vector includes the two coordinates of the center and the radius,
and in an ellipse it includes the two coordinates of the center and
the two radii. g may be a only piecewise continuous or a vector
of several functions, e. g. for multi-facet objects, as is the case in
Fig. 2. The four functions in that case are

g1 = xb2, g2 = xb2 −B, g3 = xb1, g4 = xb1 − A,

ϑ = (Ob1,O
b
2,A,B).

(2.2)

Alternatively, the four lines can be described by the single
function that is their product

g = xb2 · (xb2 −B) · xb1 · (xb1 − A). (2.3)

The advantage of this form is the automatic calculations without
the need of logical operations that determines which facet is active.
Dealing with simpler functions, on the other hand, is better from
a statistical point of view.

To relate the local (2.1) to the actual measurement a coordinate
transformation is required. While this can be done by means of
standard geometry, the derivation is more structured and pseudo-
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Fig. 2. A rectangle represented by four functions

linear when homogeneous coordinates are used. The body coordi-
nates system and the global coordinates system are related as



X1

X2

1


 = TbRb



x1,b
x2,b
1


 , (2.4)

where Rb(γ
b) and Tb(O

b
1,O

b
2) are the rotation and translation trans-

formation matrices from body coordinates respectively. On the other
hand, a point on the contour, from the sensor point of view, is
given by 


X1

X2

1


 = TsRs



r

0

1


 , (2.5)

where Rs(γs) and Ts(Os1,O
s
2) are the transformations from the

sensor coordinates. Combining the two relationships we have


x1,b
x2,b
1


 = R−1

b T−1
b TsRs



r

0

1


 . (2.6)

Substitution into the contour (2.1) gives the k-th measurement
reading of a point on the contour, in terms of the measured
quantities as

g(xs, r,ϑ) = 0, (2.7)
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where
xs =

[
Os1 Os2 γs

]T
. (2.8)

The derivation so far was purely geometric, assuming perfectly
accurate measurements. In reality each of the measured quantities
contains noise. The k-th measurement point is described by

[
xsk
rk

]

︸ ︷︷ ︸
true

=

[
zsk
rk

]

︸︷︷︸
measured

−
[
vsk
vrk

]

︸︷︷︸
noise

= zk − vk, (2.9)

where zk are the actual measurements and the elements of vk rep-
resent the corresponding noises. With this notation (2.7) becomes

yk = g(zk,ϑ, vk) = 0. (2.10)

Equation (2.10) is an implicit measurement where the artificial
output is always zero but the actual measurements, in particular the
distance r, appear as coefficients. The equation is nonlinear in the
measurements and consequently in the noise as well. Since there
is an uncertainty in the position and the orientation of the sensor,
these quantities, which in general change from one measurement to
another, need to be estimated in addition to the object parameters.
Define the vector

x̃k =

[
xsk
ϑ

]
. (2.11)

The overall measurement is, therefore,
[
zsk
0

]
=

[[
I o

]
x̃k + vs

g(x̃k, zk, vk)

]
(2.12)

or generically
ỹk = H(x̃k, vk). (2.13)

Notice that although only the parameters ϑ are of interest, they
cannot be separated from the rest of x̃kone has to estimate xsk as
well. The implicit measurement is non-linear. One way to overcome
that is the use of the extended Kalman filter (EKF), which uses a
linearized version of the measurement. For the sake of brevity, we
present only a general statement of the estimation scheme, where
the details can be found in [3].

̂̃xk = x̃k +Kk(ỹk −H(x̃k, 0)), (2.14)
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Kk = Kk(C̃k, D̃k), (2.15)

where C̃k and D̃k are the coefficients of the state and the noise
after linearization, which are given by

C̃k =

[
I 0
∂g

∂xs

∂g(x̃)

∂ϑ

]

|x̃=x̃k

, D̃k =

[
I 0

0
∂g

∂r

]

|x̃=x̃k

. (2.16)

Since the EKF is based on linearization about the a priori

estimation x̃k, a natural extension is a recursive procedure with ̂̃xk
replacing x̃k and so on. This is the iterative extended Kalman filter
(IEKF) [13]. A further extension is given in [2] with the introduc-
tion of noise updated iterative extended Kalman filter (NUIEKF).
The key idea is that better estimation of the state variables can be
obtained if the measurement noise is updated iteratively as well. In
general terms, the estimation in the i-th iteration of the k-th time
step is given by

̂̃xk,i+1 = x̃k + K1,k,i

(
yk −H(̂̃xk,i, v̂k,i) − C̃k,i (x̃k − ̂̃xk,i) + D̃k,iv̂k,i

)
,

v̂k,i+1 = K2,k,i

(
yk −H(̂̃xk,i, v̂k,i) − C̃k,i(x̃k − ̂̃xk,i) + D̃k,iv̂k,i

)
,
(2.17)

where the gains K1,k,i and K2,k,i are calculated based on the iterative

linearization C̃k,i, D̃k,i.
Overhead measurements are somewhat simpler as they produce

directly points that are, apart from the noise, on the contour
g(xb1,x

b
2,ϑ) = 0. The estimation process then follows along the same

lines as in (2.8)–(2.10) but with (2.10) as the only measurement,
i. e. x̃k = ϑ and equations (2.12) and (2.16) are reduced to their
lower part.

B. Camera Measurements. Assume now that the measure-
ment is made by a single, or repeated, camera picture. Points
belonging to the contour can be found by any edge detection
algorithm, so the main task is to find how the coordinates of a point
in the 3D global or local space is translated to the 2D image plane.
Let (xc, yc, zc) be the coordinates of a point in the camera frame
with its Z axis coinciding with the optical axis, and (u, v) the
coordinates in the image. The two coordinate systems are related by

u =
fxxc

zc
+ u0, v =

fyyc

zc
+ v0, (2.18)
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where fx, fy are the focal distances of the camera, and u0, v0 are
the coordinates of the image center. The same relationship can be
also written as




u′

v′

w

1


 = K ·




xc
yc
zc
1


 =




fx 0 u0 0

0 fy v0 0

0 0 1 0

0 0 0 1







xc
yc
zc
1


 , (2.19)

where the (u′, v′) and (u, v) are related by

u =
u′

w
, v =

v′

w
. (2.20)

A crucial point in camera measurement is the missing depth
information, i. e. while u and v are given in the picture, w is not.
Hence additional information is required to transformation back to
(xc, yc, zc). Let G(x̃) describe the surface of the 3D object, as shown
in Fig. 3. The line connecting a point x̃1, which will be on the
contour in the picture, and the camera position Oc is tangent to the
object, or equivalently, perpendicular to the normal. Mathematically
this is described by

∂G

∂x̃ |x̃=x̃1
⊥(x̃1 −Oc) ⇒

(
∂G

∂x̃ |x̃=x̃1

)T
· (x̃1 −Oc) = 0. (2.21)

If the body has sharp edges, e. g. a box, the situation becomes
more complex, and the single normal is replaced by a cone that
the line should be perpendicular to a certain member of it. Since
we focus on a orthogonal views, a more plausible assumption is
that the distance from the object described by w, is known. With
that information the scaling from the image to the true view is
straightforward. As was mentioned earlier, edge detection methods
are used to define points that, apart from noise, lie on the contour.
The situation then is similar to the overhead laser measurements,
and the estimation problem is fitting a known function with un-
known parameters.

At the end of the process, same as the case of laser measure-
ment, we have two or three orthogonal views. In the next section
we outline the procedure for creating a 3D object out of them.
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3. Topological relations and dimensioning analysis using
variational geometry

The input to this stage is a dimensioned 2D view, which goes
through a constraint evaluation process resulting in a 2D view
constraint set. Dimensions define geometric constraints, such as
distance between two points, distance between a point and a bar,
and an angle between two bars. Spatial relations define topological
constraints such as tangency, parallelism, and perpendicularity [11].
The constraints extracted from each 2D view represent relations
among explicit and implicit characteristics. Each dimension is for-
mulated as a constraint. There are two kinds of constraints, one,
defined by a single equation, and a compound constraint, which
require two or more equations.

Each constraint equation is a function of points in the geometric
dimension scheme. Equation i, denoted fi, is formulated as follows:

fi = {x1, y1,x2, y2, . . . ,xn, yn} , (3.1)

where n denotes the number of points constraints by the geometric
entity.

For the complete 2D view, a set of constraints, denoted as F , is
given as follows:

F = {f1, f2, . . . , fm} . (3.2)

As an example, a distance from a point to a line is presented.
To constrain the distance D between a point Pa and line PbPc
two vectors must be defined: a unit vector Û from Pb to Pc and
a vector V from Pb to Pa the distance D is a cross product Û × V :

Û =
xc − xb

|PbPc|
î+

yc − yb

|PbPc|
ĵ = Uxî+ Uy ĵ (3.3)

and
V = (xb − xa) î+ (yb − ya) ĵ, (3.4)

where i and j are unit vectors in the x and y directions, respectively.
The point-to-line constraint if formalized as:

f1 = Ux (yb − ya) − Uy (xb − xa) −D = 0. (3.5)

The system constructs a knowledge base of variational ge-
ometry rules for constraining the dimensioning scheme and the
relations between the geometry sites in the view [16]. In the rule
base, constraining the dimensioning scheme is done by positioning
a selected point, called anchor point, at the origin in order to
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prevent solid body translation. All points are defined relative to this
anchor point. To prevent solid body rotation, a bar is defined to be
horizontal, i. e., parallel to the x axis. For the dimensioning and the
constraint set to be valid, the Jacobian constraint matrix should
meet two requirements. First, the number of constraints must be
equal to twice the number of vertices, and second, the rank of
the matrix must equal the number of constraints. Meeting these
requirements indicates that the matrix is non-singular and hence
there is neither redundancy nor lack of dimensions and definitions

Fig. 3. Front view

of the constraints. The constraint set F{Front}, for the Front view
in Fig. 3 is formalized in (3.6):

f1: (x2 − x1)
2 + (z2 − z1)

2 − c2 = 0 Euclidian Distance,

f2: (x3 − x3)
2 + (z3 − z3)

2 − d2 = 0 Euclidian Distance,

f3: (x1 − x8)
2 + (z1 − z8)

2 − c2 = 0 Euclidian Distance,

f4: (x8 − x6)
2 + (z8 − z6)

2 − b2 = 0 Euclidian Distance,

f5: (x9 − x10)
2 + (z9 − z10)

2 −R2
2 = 0 Euclidian Distance,

f6: (x9 − x4)
2 + (z9 − z4)

2 −R2
1 = 0 Euclidian Distance,

f7: (x1 − x8) (x2 − x1) + (z1 − z8) (z2 − z1) = 0 Perpendicularity,

f8: (x2 − x3) (x9 − x3) + (z2 − z3) (z9 − z3) = 0 Perpendicularity,

f9: (x1 − x2) (x7 − x2) + (z1 − z2) (z7 − z2) = 0 Perpendicularity,

f10: (x5 − x6) (x8 − x6) + (z5 − z6) (z8 − z6) = 0 Perpendicularity,

f11: (x5 − x4) (x9 − x4) + (z5 − z4) (z9 − z4) = 0 Perpendicularity,

f14: (x1 − x8) (x7 − x8) + (z1 − z8) (z7 − z8) = 0 Perpendicularity,

f12: x5 − x2 = 0 Collinear Points,

f13: x6 − x1 = 0 Collinear Points,

f15: x4 − x3 = 0 Collinear Points,
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f16: x10 − x3 = 0 Collinear Points,

f17: x9 − x3 = 0 Collinear Points,

f18: x1 = 0 Ancor Point,

f19: z1 = 0 Ancor Point,

f20: z2 − z1 = 0 Orientation.
(3.6)

A triangular prism is described in Fig. 4 by two orthographic
view: Front view (F) and Side view (S).

Fig. 4. Front view (F) and Side view (S) of a triangular prism

In this example we use the following parameters for the vertices
found in the two 2D views.

For the front view we define the three vertices P1 (x1, y1) ,
P2 (x2, y2) , P3 (x3, y3) and for the Side view define the four vertices
P1 (x1, z1) , P2 (x2, z2) , P3 (x3, z3) , P4 (x4, z4). Two rules from the
variational geometry rule base described in Section 3 are used:

Rule #1 — Euclidian distance between two point, and

Rule #2 — Perpendicularity.

To prevent solid body translation, the anchor point was fixed as
the origin (0, 0). All the points are defined relative to this anchor
point. To prevent solid body rotation, we choose a particular bar to
be horizontal, i. e., parallel to the horizontal axis.

For the Front view of Fig. 5 we formulate the following six
constraints:

f1: (x2 − x1)
2 + (y2 − y1)

2 − b2 = 0,

f2: (x3 − x1)
2 + (y3 − y1)

2 − a2 = 0,

f3: (x1 − x2) (x3 − x1) + (y1 − y2) (y3 − y1) = 0,

f4: x1 = d = 0,
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f5: x1 = e = 0,

f6: y2 − y1 = 0.
(3.7)

From these set of equations we obtain a 6x6 Jacobian matrix.
The rank of the matrix was calculated and the dimensioning was
found to be proper and equal twice the number of vertices.

For the Side view, eight other constraints are formulated as
follows:

f1: (y2 − y1)
2 + (z2 − z1)

2 − d2 = 0,

f2: (y3 − y1)
2 + (z3 − z1)

2 − b2 = 0,

f3: (y4 − y3)
2 + (z4 − z3)

2 − d2 = 0,

f4: (y4 − y2)
2 + (z4 − z2)

2 − b2 = 0,

f5: (y1 − y2) (y3 − y1) + (z1 − z2) (z3 − z1) = 0,

f6: y1 = e = 0,

f7: z1 = a = 0,

f8: z2 − z1 = 0.
(3.8)

As before, we calculated an 8 × 8 Jacobian matrix from the
set of equations. The rank of this matrix was found to be 8,
indicating proper dimensioning and constraint definition of the side
view as well.

4. Conclusions

A comprehensive method for automatically constructing a para-
metric representation for an orthographic views obtained by a mov-
ing sensor was reported and described. It is assumed that the shape
of the object body, actually sub objects of the entire body, is known
but its parameters are not. Also, the position of the body need not
be known in advance. The raw distance measurements are processed
via a filter which generates, estimates of the part dimensions
and position. Since the formulation leads to implicit measurement
equations, standard extended Kalman filter techniques, usually fail
to converge to accurate values. A new method, called a Noise
Updated Iterative Extended Kalman Filter, was developed and used.
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The fact that the outcome of the estimation (measurement)
process is a set of explicit contour equations is suitable to the
second step which is creating the orthographic views through
variational geometry representation. In previous applications those
equations had to be built from the views as a preliminary step.
The match between the output of the Kalman filtering approach
for 2D reconstruction, and the starting point for the parametric
representation and orthographic views reconstruction is the key
advantage for the integrated approach. The output representation of
the orthographic views are the input for the process of reconstruc-
tion of 3D models [6].
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The behavior of the steady intrusive gravity currents spread-
ing into a stratified ambient fluid is investigated. The intrusive
gravity current of thickness h and density ρc which propagates
with speed U at the neutral buoyancy level of a long horizontal
channel of height H into a stratified ambient fluid whose density
increases linearly from ρo to ρb is investigated. The intrusive
and the ambient fluids are assumed to be asymmetric due to
axis passing the stagnation point of the system. The Boussinesq,
high-Reynolds number two-dimensional configuration is discussed.
The Long’s model combined with the flow-force balance over the
width of the channel and the pressure balances over a density
current are used to obtain the desired results. It is shown that
the intrusion velocity decreases with decreasing the asymmetry
of the system and approaches its minimum for the symmetric
configuration. In additional, the comparison between asymmetric
and symmetric configurations shows no significant differences
between the models.

1. Introduction

A gravity current is formed whenever one fluid flows primarily
horizontally into a lighter or heavier fluid. The classical theoretical
work on the subject, Benjamin [3], considers gravity currents enter-
ing homogeneous fluid using steady-state theory, though including
a model for energy dissipation.

In the recent work, Ungarish [15] generalized the classical
results of Benjamin concerning the propagation of a steady bound-
ary gravity current of density into a homogeneous ambient to the
case of a stratified ambient. For a Boussinesq, high-Reynolds two-
dimensional configuration, a flow-field solution of Long’s model,
combined with flow-force balance over the width of the channel was
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used. In particular, the study shows that for a week stratification
the classical result of Benjamin is fully recovered.

Previous investigation of the asymmetric intrusion was done
by Holyer and Huppert [7]. They extended Benjamin’s work to
currents of prescribed volume flux and constant density ρc entering
an ambient fluid as either a boundary current or an intrusion. The
ambient non-continuously stratified fluid was composed from the
two layers: the upper layer of the constant density ρup and the lower
layer of the constant density ρlo, where ρup < ρc < ρlo. It was shown
that the depth of the current is not always uniquely determined
and it is necessary to use some additional, to the conservation
relationships, assumptions to determine which solution occurs. An
appropriate principle is obtained by considering dissipative currents.
It was postulated that the energy which is lost will go to form
a stationary wave train behind the current.

Additional investigation of the asymmetric intrusion was done
by Cheong, Kuenen and Linden [4]. They made a number of exper-
iments and presented numerical results for the propagation of the
constant density fluid into the two-layer non-continuously stratified
ambient fluid configuration. In particular, it was shown that if the
density of the intrusion is the depth-weighted mean of the layer
densities, the intrusion propagation speed approaches its minimum
value.

The present work attempts to extend the steady-state theory
of the boundary gravity currents, presented by Ungarish, to the
intrusive gravity currents propagating into an linearly continuously
stratified ambient fluid. The system of equations obtained by Un-
garish for the boundary gravity currents is quite complicated and
in some cases non unique solution is obtained. The theory become
much more complicated in the intrusion case.

The structure of the paper is as follows. In Section 2 the
problem is formulated in form of the system of two non-linear
equations. In Section 3 results are presented and various values of
governing parameters are examined and discussed. In Section 4 the
asymmetric and symmetric cases are compared. In Section 5 some
concluding remarks are given.

2. Formulation

The system configuration is sketched in Fig. 1. The long hor-
izontal channel of height H = H1 + H2 filled with the linearly
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Fig. 1. Schematic description of the system

stratified ambient fluid. The density of the unperturbed ambient, on
the right-hand side, increases linearly from ρo at the top to ρb at the
bottom. The denser fluid of density ρc and thickness h = h1 + h2,
called the intrusion, propagates with uniform velocity U at the
neutral buoyancy level of a stratified fluid. The steady-state flow
pattern is concerned.

The driving force is the reduced gravity:

g′ = εg, (2.1)

where g is the gravitational acceleration and

ε =
ρc − ρo

ρo
. (2.2)

The horizontal and vertical coordinates are x, z and the corre-
sponding velocity components are u,w. The gravity acts in the −z
direction. We choose the z = 0 axis passing the stagnation point
of the system. Hereafter we will denote by “1” the intrusion part
in the 0 ≤ z ≤ h1 domain and the correspond ambient part in the
0 ≤ z ≤ H1 domain. And by “2” another part of intrusion in the
−h2 ≤ z ≤ 0 domain and of the ambient in the −H2 ≤ z ≤ 0 domain.

An important quantity that characterizes continuously stratified
fluids is the buoyancy frequency N , which is defined by

N 2 = − g

ρo

dρ

dz
=

g

H1 +H2

ρb − ρo

ρo
. (2.3)

The other important parameters of the problem are the height
relations:

a1 =
h1
H1

; a2 =
h2
H2

; η =
H1

H2
. (2.4)
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A dimensional parameter which denotes the relative magnitude of
the stratification is defined by:

S =
ρb − ρo

ρc − ρo
. (2.5)

The domain of interest is S > 1. We note that 0 ≤ S ≤ 1 case corre-
sponds to the boundary gravity current discussed by Ungarish [15]
and will not be discussed here.

We denote by Fr the Froude number which is defined by

Û = Fr =
U√

0.5 g′(h1 + h2)
. (2.6)

The symmetric case is obtained, if h1 = h2 and H1 = H2. In this

case the Froude number is defined by Fr =
U

(g′h1)
1/2

and, as it will

be shown later, S = 2.
The analysis of the system is started with a solution of a two-

layer stratified flow-field over a rigid topography in a channel with
an upper and lower horizontal rigid lids at z = H1 and z = H2

correspondingly. The obstacle (or topography) encountered by the
unperturbed stratified fluid is defined by the elevation function
z = χ1(x) in the upper layer and by z = χ2(x) in the lower
layer. In the x < 0 domain, χ1(x) = χ2(x) = 0 and for x > 0,
far downstream at the left, a parallel geometry is achieved with
χ1(x) = h1 = const > 0 and χ2(x) = −h2 = const < 0.

2.1. Upstream flow. The far upstream flow at the right
x → −∞ consists of parallel horizontal streamlines with constant
velocity U and a prescribed stable linearly changing density. Using
the subscript “r” (right) to denote this region and employing
hydrostatic balance, we obtain:

ur(z) = U , −H2 ≤ z ≤ H1,

ρr(z) =
ρo − ρb

H1 +H2
z +

ρoH2 + ρbH1

H1 +H2
, −H2 ≤ z ≤ H1,

pr(z) = −g
z∫

0

ρr(z) = −g
[
ρo − ρb

H1 +H2

z2

2
+
ρoH2 + ρbH1

H1 +H2
z

]
,

−H2 ≤ z ≤ H1,

(2.7)
where u is the velocity; ρ is the density and p is the pressure.
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2.2. Downstream flow. Under the assumption of a two-
dimensional, steady Boussinesq hydrostatic flow, Long’s model (see
Baines [2]) can be applied to each layer separately to reduce the set
of the governing Navier-Stokes equations to a single ODE equation
for each layer for the displacement δ(x, z) with proper boundary
conditions. In particular, the boundary conditions are: 1). δ = 0 at
the upstream right region; 2). δ = χ1(x) at the upper layer and 3).
δ = −χ2(x) at the lower layer.

For the ambient above the upper intrusion layer, h1 ≤ z ≤ H1,
the displacement δ(x, z) satisfies the following problem





δzz + k2δ = 0,

lim
x→−∞

δ(x, z) = 0,

δ(x, z = H1) = 0,

δ(x, z = h1(x)) = h1(x),

(2.8)

where k =
N

U
. The exact solution of (2.8) is given by

δ(z) = h1(x) ·
sin

(
kH1

[
1− z

H1

])

sin
(
kH1

[
1− h1

H1

]) . (2.9)

By the similar way, for the ambient below the lower intrusion
layer −H2 ≤ z ≤ −h2,

δ(z) = −h2(x) ·
sin

(
kH2

[
1 +

z

H2

])

sin
(
kH2

[
1− h2

H2

]) . (2.10)

We replace the solid obstacle with a stationary fluid of density ρc
in the domain x ≤ 0, −χ2(x) ≤ z ≤ χ1(x). The xz system is now
a frame of reference attached to the gravity current and the origin
is the front stagnation point. By combining these two layers we
have:

δ(z) =





h1
sin γ1

· sin
[

γ1
1− a1

(
1− z

H1

)]
, h1 ≤ z ≤ H1,

− h2
sin γ2

· sin
[

γ2
1− a2

(
1 +

z

H2

)]
, −H2 ≤ z ≤ −h2,

(2.11)

5
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where
γ1

H1(1− a1)
=

γ2
H2(1− a2)

= k =
N
U

(2.12)

and

γ1 = (1− a1)

√
S

η

η + 1
·
√

2η

a1η + a2

1

Û
, (2.13)

In the left region the parallel flow satisfies:

ρl(x, z) =





ρc, −h2 ≤ z ≤ h1,

ρr(z) − ρo − ρb

H1 +H2
· h1

sin γ1
· sin

[
γ1

1− a1

(
1− z

H1

)]
,

h1 ≤ z ≤ H1,

ρr(z) +
ρo − ρb

H1 +H2
· h2

sin γ2
· sin

[
γ2

1− a2

(
1 +

z

H2

)]
,

−H2 ≤ z ≤ −h2,
(2.14)

and

ul(x, z) =





0, −h2 ≤ z ≤ h1,

U
(
1 +

a1
1− a1

· γ1
sin γ1

· cos
[

γ1
1− a1

(
1− z

H1

)])
,

h1 ≤ z ≤ H1,

U
(
1 +

a2
1− a2

· γ2
sin γ2

· cos
[

γ2
1− a2

(
1 +

z

H2

)])

−H2 ≤ z ≤ −h2,
(2.15)

The hydrostatic balance yields

pl(x) = pS − g

z∫

0

ρl(z)dz, (2.16)

where S denotes the stagnation point. By Bernoulli’s low at the
stagnation point, we have

pS =
1

2
U2ρr(z = 0) =

1

2
U2 ρoH2 + ρbH1

H1 +H2
.

2.3. The flow-force balance. Following Benjamin [3] and
Ungarish [15], we consider the momentum balance in a fixed rect-
angular control volume whose lower and upper boundaries are the
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zero-stress planes z = H1 and z = −H2 and the vertical boundaries
are in the parallel up- and down-stream regions. The assumption
of steady-state impose the flow-force balance over the width of the
channel

H1∫

−H2

(ρlu
2
l + pl)dz =

H1∫

−H2

(ρru
2
r + pr)dz. (2.17)

The evaluation of the integral of the momentum flux is simplified
by the Boussinesq assumption ρl,ru

2
l,r(z) ≈ ρou2l,r(z). After some

algebra and more use of the Boussinesq assumption, we can express
the flow-force balance as

Û 2
1

2
(Mf (a1, γ1) + η ·Mf (a2, γ2)) = F1(γ1, a1) + F2(γ2, a2), (2.18)

where

Mf (a, γ)) =
1

1− a

[
1 + a− 2a2 + a2(γ2 + (γ ctg γ)2 + γ ctg γ)

]
;

(2.19)

F1(γ1, a1) = 1− 0.5 a1 +
H1

H1 +H2

× S

(
−1 + a1 − 1

3
a21 + (1− a1)

2 1− γ1 ctg γ1

γ21

)
(2.20)

and

F2(γ2, a2) =
a2

a1η
2
·
[
−1 + 0.5 a2 +

H2

H1 +H2

× S

(
0.5a2 +

H1

H2
(1− 0.5 a2) −

1

3
a22 + (1− a2)

2 1− γ2 ctg γ2

γ22

)]
.

(2.21)

The right-hand side of (2.18) can be regarded as the buoyancy
pressure driving, and the left-hand side as the dynamic reaction.
It is noted that there is no mixing between the upper- and lower-
layers terms in both hands of (2.18).

We note, that substitution of a2 = a1 and H1 = H2 into (2.18)
brings it to the flow-force balance for the symmetric intrusion. In
this case, as expected, the equation (2.18) becomes identical to this
obtained by Ungarish [15] for the boundary gravity current.

5*
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2.4. Pressure balance. The additional assumption should be
done in form of the pressure balance between the upper- and lower-
layers of the intrusion at the left side of the system.

According Bernoulli’s low and using the z-hydrostatic pressure
distribution we obtain the condition, which connects between the
layers:

ηa1 ctg γ1 = ±a2 ctg γ2 (2.22)

Finally, by substitution (2.13) into (2.18) and (2.22), we obtain
the system of two non-linear equations with four parameters: S,
γ1, a1 and a2. However, only one pair of these parameters are
independent. In Section 3 we will find the solution of this system,
(γ1, a2), as function of S and a1.

2.5. Validity-stability and criticality. The system of the
equations (2.18), (2.22) may have non-unique solution (γ1, a2). The
values of γ1 (or γ2) may be larger than π/2. This introduces the
possibility of negative ul. Let us denote by

ϑi =





0
(
0 < γ ≤ π

2

)
,

ai

1− ai
γi| ctg γi|

(
π

2
< γ < π

)
,

ai

1− ai

γi

| sin γi|
(π < γ) ,

(2.23)

where i = 1, 2, a measure of the most severe relative negative
contribution of the perturbation flow to the resulting ul. According
Baines [2] and Ungarish [15], the results are physically acceptable
only for (ϑ1,ϑ2) < (1, 1) case. The valid results are in the range
0 ≤ γi ≤ max[π, (1− ai)/ai], i = 1, 2.

In the following analysis we are concerned only with “valid”
solutions, for which (ϑ1,ϑ2) < (1, 1) holds. Moreover, in this case
the ± sign in equation (2.22) vanishes and it yields

ηa1 ctg γ1 = a2 ctg γ2. (2.24)

3. Results

We assume that the density of the ambient fluid at the stagna-
tion point is equal to the density of the current, ρa(z = 0) = ρc, and
therefore

S = 1 +
1

η
. (3.1)
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Our first numerical experiment of the model is to keep constant
the height of the upper layer of the ambient, H1, and the height

of the intrusion upper layer, h1 (or the upper layer height relation

a1 = h1/H1) and to increase the height H2 of the ambient of
the lower layer. In this case the stratification does not change

and so the value of N . Valid results were obtained in the range

1.0 ≤ H2/H1 ≤ 1.27. Typical valid results of Fr and the height
relation of the lower layer a2, obtained numerically from (2.18)

and (2.24) are presented in Fig. 2 (see supplementary sheet 2).
The case H2/H1 = 1 corresponds to the symmetric configuration

H1 = H2. As expected, for this case the value of a2 is equal to a1
and the values of Fr are equal to the values of Fr mentioned by
Ungarish [15] for the boundary gravity current.

The results show that if the height of the lower layer, H2,

increases, the lower height ratio a2 also increases. Moreover, in
this case the lower height ratio a2 becomes greater than a1 inde-

pendently on the values of a1.
The schematic sketch of this experiment is presented in Fig. 3

for a1 = 0.25: figure (a) shows the symmetric system configu-

ration with H1 = H2 = 1 and a1 = a2 = 0.25; figure (b) shows

the correspond asymmetric configuration: the upper layers remains
unchanged with a1 = 0.25 and the height H2 of the lower layer

increases to be H2 = 1.25H1. As result of it, the height h2 increases
and the height ratio a2 becomes equal to ≈ 0.54.

The second numerical experiment considers the opposite con-

figuration: it keeps the values of H2 and a2 constant and increases

the height of the upper layer H1. The results show that the upper
layer behaves exactly like the lower layer in the first numerical

experiment described above. This result is expected although there

is no symmetry between the variables a1 and a2 in equation (2.18).
The valid results were obtained in the range 1.0 ≤ H1/H2 ≤ 1.27.

From the first two numerical experiments following that the

valid results are obtained only in the range 0.786 ≤ H2/H1 ≤ 1.27.
Otherwise, the height relation ai (i = 1, 2) approaches not physical

values which are greater than 0.5.

As an additional, third, experiment of the model the value of the
ambient height ratio H2/H1 is prescribed constant and the value of

dimensionless Froude number Fr is calculated as function of the
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Fig. 3. The first numerical experiment: H1 and h1 are fixed and a1 = 0.25; The
lower layer height H2 is increased to H2/H1 = 1.25

total height ratio a defined by

a =
h1 + h2
H1 +H2

=
ka1 + a2
k + 1

. (3.2)

The sketch of this experiment is presented in Fig. 4: (a) shows the
symmetric configuration with H2/H1 = 1 and a = 0.25; in (b) the
total height H and a remain constant (with a = 0.25), but the
height ratio H2/H1 increases to be 1.25.

Fig. 4. Third numerical experiment: a is fixed. The symmetric H2/H1 = 1.0 and
a = 0.25 and its corresponding asymmetric configuration with H1/H2 = 1.25 and

a = 0.25

The results are shown in Fig. 5 (see supplementary sheet 2).
The solid line corresponds to the symmetric configuration:
a1 = a2 and H2/H1 = 1. The other lines are the graphs of the
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H1/H2 = 0.95, 0.9, 0.85, 0.8. The Froude number Fr is a decreasing
function of a. In the symmetric case, H1 = H2, Fr approaches its
minimal values. Then, when the height ratio H1/H2 increasing and
the system configuration becomes asymmetric, the Froude number
increasing also. This effect was also denoted by Cheong, Kuenen
and Linden [4] for the two-layer non-continuously stratified ambient
fluid. In particular, it was shown numerically and experimentally
that if the density of the intrusion is the depth-weighted mean of
the layer densities, the intrusion propagation speed approaches its
minimum value.

Following our numerical results, the system (2.18), (2.22)
has unique validity solution (γ1, a2) for 0 < a1 ≤ 0.5 and
0.786 ≤ H2/H1 ≤ 1.27.

However, according Ungarish [15], for the boundary gravity
currents, non-unique solutions may be obtained for 0 < a ≤ 0.1.
The only case in which this claim is wrong is SU → 1, where only
unique solution is reported.

As it was discussed above, SU → 1 case corresponds to the
S → 2 intrusion case for which unique solution is obtained, which
is in agreement with the boundary gravity current results. When
2 < S < 2.3 and a1 ≤ 0.1, the value of a2 increases and approaches
values which are greater than 0.1, so the validity conditions does
not satisfied for the lower layer. The same situation takes place for
1.75 < S < 2.0, when the validity condition does not satisfied for
the upper layer.

The additional verification of the model was done by the pres-
sure difference analysis which show that the pressure differences,
as expected, approaches small values.

4. Comparison with symmetric case

To sharpen the insights provided by our results obtained for the
asymmetric case, we compare to (specially created) corresponding
symmetric configurations.

Hereafter all parameters of the symmetric configuration will
be denoted by the upper index “(s)”. The total height of the
ambient for the symmetric case is set to be equal to the total
height H = H1 + H2 of the ambient for the asymmetric case

H and H
(s)
1 = H

(s)
2 =

H

2
. The height of the symmetric intrusion
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Fig. 6. Comparison between asymmetric and symmetric configurations: H and h
are fixed. The asymmetric H2/H1 = 1.25 and a1 = 0.25 and its correspond

symmetric configuration with H2/H1 = 1 and a1 = 0.39

is equal to the total intrusion height h = h1 + h2 of the asymmet-

ric case: h
(s)
1 = h

(s)
2 =

h

2
. The typical comparison is sketched on

Fig. 6: (a) displays the typical configuration for H2/H1 = 1.25 and
a1 = 0.25 and (b) is a corresponding symmetric configuration with
H2/H1 = 1.0 and a1 = a2 = 0.39.

Figure 7 (see supplementary sheet 2) shows the behavior of the
non-dimensional velocity of the intrusion as a function of the
ambient height relation H2/H1. In this case the heights of the
asymmetric upper ambient, H1, and the intrusion, h1, layers are
unchanged. The lower layer height increases. The velocity U was
scaled by constant value NH1 and was plotted for various val-
ues of a1.

The symmetric intrusion height relation was calculated by

a(s) =
h

H
=
ηa1 + a2
η + 1

.

We see that the differences between the symmetric and the
asymmetric configurations are not large. For a1 ≤ 0.2 case,
the symmetric intrusion propagates a little faster (≈ 1.5%) than
the asymmetric intrusion, however this tendency is changed and
for the a1 ≥ 0.3, the asymmetric intrusion is faster than the
symmetric one.

Similar conclusion was obtained for the two-layer (non-
stratified) model of Cheong etc. [4]: the velocity of the intrusion
has its minimum, if the two ambient layers have the same height
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(symmetric case). This case corresponds to 0.3 ≤ a ≤ 0.5, since
this is a possible physical range of the stratified intrusion problem,
after release.

5. Summary

The steady-state theory of the boundary gravity currents propa-
gating into an linearly-stratified ambient fluid have been generalized
to the intrusive gravity currents propagate at the neutral buoyancy
level of a long horizontal channel into a stratified ambient fluid.
The two-dimensional asymmetric configuration due to the neutral
buoyancy level was investigated. The problem was formulated using
the flow-force and pressure balances of the system and solved
numerically.

The study shows the following points: 1). the valid results was
obtained in the range 0.786 ≤ H2/H1 ≤ 1.27. 2). the velocity of
intrusion propagation approaches its minimum in the symmetric
configuration case. 3). there is no significant differences between
asymmetric and corresponding symmetric configurations.

However, the lack of experimental data prevents sharper con-
clusions about the insights provided by this theory. We hope that
the present study will provide the background and motivation for
the laboratory experiments on this problem.

References

1. Amen R. and Maxworthy T. The gravitational collapse of a mixed
region into a linearly stratified fluid // J. Fluid Mech. 1984. V. 96.
P. 65–80.

2. Baines P. Topographic effects in stratified flows. — Cambridge Univ.
Press, 1995.

3. Benjamin T. Gravity currents and related phenomena // J. Fluid
Mech. 1968. V. 31. P. 209–248.

4. Cheong H., Kuenen J. and Linden P. The front speed of intrusive
gravity currents // J. Fluid Mech. 2006. V. 552. P. 1–11.

5. Faust K. and Plate E. Experimental investigation of intrusive gravity
currents entering stably stratified fluids // J. Hydraulic Res. 1984.
V. 22. P. 315–325.

6. Hoult D. Oil spreading on the see // Annu. Rev. Fluid Mech. 1972.
V. 2. P. 341–368.



138 T. Zemach, M. Ungarish

7. Hoyler J. and Huppert H. Gravity currents entering a two-layer fluid //
J. Fluid Mech. 1980. V. 100. P. 739–767.

8. Huppert H. and Simpson J. The slumping of gravity currents //
J. Fluid Mech. 1980. V. 99. P. 785–799.

9. Maxworthy T., Leilich J., Simpson J. and Meiburg E. The propagtion
of a gravity currents in a linearly stratified fluid // J. Fluid Mech.
2002. V. 453. P. 371–394.

10. Morton K.W., Mayers D. F. Numerical solution of PDE. — Cambridge
Univ. Press, 1998.

11. de Rooij F. Sedimenting particle-laden flows in confined geome-
tries. — PhD thesis, DAMTP, University of Cambridge, 1999.

12. Rottman J. and Simpson J. Gravity currents produced by instanta-
neous release of a heavy fluid in a rectangular channel // J. Fluid
Mech. 1983. V. 135. P. 95–110.

13. Simpson J. Gravity currents in the environment and the laboratory. —
Cambridge Univ. Press, 1997.

14. Stommell H. and Farmer H. G. Abrupt change in width in two-layer
open channel flow // J. Mar. Res. 1952. V. 11. P. 205–214.

15. Ungarish M. On gravity currents in a linearly stratified ambient:
a generalization of Benjamin’s steady-state propagation results //
J. Fluid Mech. 2006. V. 548. P. 49–68.

16. Ungarish M. Intrusive gravity currents in a stratified ambient-
shallow-water theory and numerical results // J. Fluid Mech. 2005.
V. 535. P. 287–323.

17. Ungarish M. and Huppert H. On gravity currents propagating at
the base of a stratified ambient // J. Fluid Mech. 2002. V. 458.
P. 283–301.

18. Ungarish M. and Huppert H. On gravity currents propagating at the
base of a stratified ambient:effects of axial symmetry and rotation //
J. Fluid Mech. 2004. V. 521. P. 69–104.

19. Ungarish M. and Zemach T. On axisymmetric intrusive gravity
currents in a stratified ambient — shallow-water theory and numerical
results // European Journal of Mechanics — B/Fluids. March–April
2007. V. 26, No. 2. P. 220–235.

20. Zatsepin A. and Shapiro W. A study of axisymmetric intrusions in
a stratified fluid // Izvestia Akademii Nauk SSSR, Fizika Atmosfery
i Okeana. 1982. V. 18, No. 1. P. 77–80.

21. Zemach T. Gravity currents: two-layer and asymptotic extensions. —
M. Sc. Thesis, Technion, Israel, 2002.



ABSTRACTS (in Russian)

Об имитационном подходе в задаче кластерной стабиль-
ности

З. Барзилай, М. Голани, З. Волькович

В данной статье обсуждается новый подход к задаче опре-
деления числа кластеров в заданной совокупности. Наш метод
сочетает в себе методику, основанную на оценке плотности сово-
купности, с методикой кластерной стабильности. Следуя первой
методике, мы рассматриваем кластеры как «острова высокой
плотности» в «море данных низкой плотности». Кроме того мы
полагаем, что эти острова устойчивы по отношению к зашумле-
нию данных. Иначе говоря, мы считаем, что добавление подходя-
щего шума к данным не ведет к резкому изменению кластеров.
С целью проверки кластерной устойчивости мы рассматриваем
пары выборок таким образом, что одна из выборок выбирается
из рассматриваемой совокупности, а вторая получается с помо-
щью добавления случайного шума к первой. Расстояния между
выборками измеряются на основе простых вероятностных мет-
рик, являющихся, де факто, статистиками тестов однородности.
Наиболее сконцентрированное в нулевой точке эмпирическое
распределение такой статистики соответствует правильному вы-
бору числа кластеров. Численные эксперименты демонстрируют
высокую надежность предлагаемого метода.

Классификация моделей локализации неисправностей
компьютерных систем

С. Френкель, Е. Левнер, В. Захаров

В статье предлагается классификация алгоритмов поиска,
используемых в задачах локализации неисправностей в слож-
ных вычислительных системах. Полезность такой классифика-
ции состоит в том, что она позволяет при разработке процедур
обслуживания соответствующей системы выбирать алгоритм по-
иска, оптимальный (в смысле минимизации некоторой функции
стоимости) для данной системы и характеристик ее обслужи-
вания. Данная классификация строится аналогично классифика-
ции Кенделла в теории очередей. Основой для классификации
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является предложенная в предыдущих работах авторов характе-
ризация концептуальной модели систем тестирования и локали-
зации неисправностей, и ряд теорем об оптимальности алгорит-
мов поиска.

Сложность и состоятельность статистических критериев
А.А. Грушо, Н.А. Грушо, Е. Е. Тимонина

В статье рассматривается связь состоятельности статистиче-
ских критериев и асимптотической сложности их вычисления
в случае конечных пространств. Показано, что из заданной
состоятельной последовательности критериев можно построить
другую состоятельную последовательность, для которой слож-
ность вычисления принадлежности наблюденных значений к кри-
тическим множествам этих критериев асимптотически мала по
сравнению с аналогичной сложностью для исходных критериев.
Однако такое упрощение по сути оказывается фиктивным. Для
того, чтобы не допускать фиктивного упрощения вычисления
принадлежности наблюденных значений к критическим множе-
ствам в последовательности критериев, необходимо накладывать
дополнительные ограничения на классы рассматриваемых крите-
риев. В статье показано, что в случае естественных ограничений
упрощение вычисления может привести к нарушению свойства
состоятельности последовательности критериев.

Приведены оценки эффективности использования двухсту-
пенчатых критериев, когда сначала работают простые, но не со-
стоятельные в заданном классе альтернатив критерии, и только
в случае непринятия гипотезы применяются сложно вычислимые
критерии для всего класса альтернатив.

Байесовские модели обслуживания и надежности
А.А. Кудрявцев, С. Я. Шоргин, В. С. Шоргин, В.М. Ченцов

Рассматривается байесовский подход для определенных задач
теории массового обслуживания и теории надежности. Соответ-
ствующий метод предусматривает рандомизацию характеристик
систем относительно некоторых априорных распределений. Дан-
ный подход может использоваться, в частности, для вычисления
средних значений и построения доверительных интервалов для
вероятностно-временных и надежностных характеристик боль-
ших групп систем или устройств. Представлены результаты для
некоторых моделей параметров входных потоков и времен обслу-
живания.
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G-сеть с переменой маршрута
Р. Мандзо, А. В. Печинкин

Рассматриваются сети массового обслуживания с отрица-
тельными заявками (G-сети), пуассоновским входящим потоком
положительных заявок, неэкспоненциальными узлами и зависи-
мым обслуживанием в различных узлах. Каждая заявка, по-
ступающая в сеть, определяется следующими случайными пара-
метрами: длиной маршрута, маршрутом, объемами и временами
обслуживания на последовательно проходимых этапах маршрута.
Отрицательная заявка при поступлении в сеть может «убить»
одну из положительных заявок. Однако «убитая» заявка не по-
кидает сеть, а продожает путешествовать по сети в соответствии
с новым (случайным) маршрутом. Для таких G-сетей показано,
что многомерное стационарное распределение вероятностей со-
стояний сети представимо в мультипликативной форме.

Стохастическая томография с веерной схемой сканиро-
вания

О.В. Шестаков

В томографическом эксперименте, основанном на веерной
схеме сканирования, объект облучается расходящимся пучком
лучей, испускаемых источником, движущимся вокруг объекта.
При использовании такой схемы проекции регистрируются зна-
чительно быстрее, чем при использовании традиционной парал-
лельной схемы. В некоторых биологических и физических прило-
жениях исследуемый объект описывается случайной функцией.
В работе рассматривается задача восстановления вероятностных
характеристик объекта по егопроекциям.

Оценка распределения задержки для динамики ВИЧ-
инфекции

А.Н. Ушакова

В настоящей статье рассматриваются два метода оценки рас-
пределения задержки в биологических динамических системах.
Примером такой системы служит модель ВИЧ-инфекции. Пер-
вый метод основывается на параметрическом подходе и на ап-
проксимации плотности распределения задержки гамма-плотно-
стью. Второй метод является непараметрическим и основан на
решении уравнения свертки с выбором параметра регуляризации
через параметрический старт.
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Об лингвистической классификации геномов бактерий
З. Волькович, В. Кирзнер, З. Барзилай

Данная статья посвящена классификации 185 полных гено-
мов прокариот на основе модифицированного метода составного
спектра. Эта модификация предполагает раздельное вычисле-
ние спектра для кодирующей и не кодирующей частей гено-
ма. Такой подход позволяет выбрать количество кластеров для
классификации геномов, не используя дополнительной информа-
ции. Биологический смысл классификации, найденной на основе
двух- и четырехбуквенных алфавитов, подтверждает правиль-
ность полученных результатов.

Экспериментальные измерения при реконструкции орто-
графических проекций

М. Вейсс-Коэн, А. Бондаренко, Й. Галеви

Рассматриваются ортографические проекции, получаемые
в автоматическом режиме на основе оценочного подхода.
Данные измерений фильтруются с помощью оценки измерений
размерности и положения. Результатом является ряд явных
контурных уравнений, дающих возможность создать, используя
вариационные геометрические принципы, ортографические
проекции объекта.

Об интрузии в линейно-стратифицированной среде:
асимметричная стационарная модель

Т. Цемах, М. Унгариш

В настоящей статье исследуются проникающие (интрузив-
ные) гравитационные течения, распространяющиеся в страти-
фицированной жидкости. Рассматриваемые течения, имеющие
толщину h, плотность ρc и скорость U на уровне нейтральной
плавучести, распространяются в канале высотой H, плотность
окружающей жидкости в котором растет линейно от ρo до ρb.
Проникающая и окружающие жидкости предполагаются асси-
метричными относительно вертикальной оси, проходящей через
точку стагнации. Рассматривается двумерная система в аппрок-
симации Буссинска при больших числах Рейнольдса. Показано,
что скорость интрузии (проникновения) убывает при уменьше-
нии асимметрии в системе и достигает минимума в симметрич-
ной конфигурации. Сравнение ассиметричной и симметричной
конфигураций демонстрирует отсутствие принципиальных раз-
личий между указанными моделями.
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