Eng | Rus

“Informatics and Applications” scientific journal

Volume 6, Issue 4, 2012

Content   Abstract and Keywords   About Authors

Full text (in Russian, with English abstracts): PDF file

ANALYTICAL MODELING INVARIANT MEASURE DISTRIBUTIONS IN STOCHASTIC SYSTEMS WITH AUTOCORRELATED NOISES.

  • I.N. Sinitsyn   IPI RAN, sinitsin@dol.ru

ON THE ACCURACY OF SOME MATHEMATICAL MODELS OF CATASTROPHICALLY ACCUMULATED EFFECTS IN PREDICTION OF RISKS OF EXTREMAL EVENTS.

  • I.A. Duchitskii1   Faculty of ComputationalMathematics and Cybernetics, M.V. Lomonosov Moscow State University, duchik@gmail.com
  • V.Yu. Korolev   M.V. Lomonosov Moscow State University; IPI RAN, vkorolev@cs.msu.su
  • I.A. Sokolov   IPI RAN, isokolov@ipiran.ru

ABOUT ADAPTIVE STRATEGIES AND THEIR EXISTENCE CONDITIONS.

  • M.G. Konovalov   IPI RAN, mkonovalov@ipiran.ru

BOUNDS IN NULL ERGODIC CASE FOR SOME QUEUEING SYSTEMS.

  • A. I. Zeifman   Vologda State Pedagogical University; IPI RAN; VSCC CEMI RAS, a zeifman@mail.ru
  • A. V. Korotysheva   Vologda State Pedagogical University, a korotysheva@mail.ru
  • Ya. Satin   Vologda State Pedagogical University, yacovi@mail.ru
  • S. Ya. Shorgin   IPI RAN, SShorgin@ipiran.ru

GENERALIZED LAPLACE DISTRIBUTION AS A LIMIT LAW FOR RANDOM SUMS AND STATISTICS CONSTRUCTED FROM SAMPLES WITH RANDOM SIZES.

  • V.Yu. Korolev  M. V. Lomonosov Moscow State University; IPI RAN, vkorolev@cs.msu.su
  • V.E. Bening   Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University; IPI RAN, bening@cs.msu.su
  • L.M. Zaks   Department of Modeling and Mathematical Statistics, Alpha-Bank, lily.zaks@gmail.com
  • A. I. Zeifman  Vologda State Pedagogical University; IPI RAN; VSCC CEMI RAS, a_zeifman@mail.ru

LOWER BOUNDS FOR THE STABILITY OF NORMAL MIXTURE MODELS WITH RESPECT TO PERTURBATIONS OF MIXING DISTRIBUTION.

  • A. Nazarov   Department ofMathematical Statistics, Faculty ofComputationalMathematics andCybernetics,M.V. Lomonosov Moscow State University nazarov.vmik@gmail.com

PREPROCESSING OF TEXT RECOGNITION UNDER THE POOR QUALITY IMAGE.

  • M. P. Krivenko   IPI RAN, mkrivenko@ipiran.ru

RANDOM GRAPHS MODEL FOR DESCRIPTION OF INTERACTIONS IN THE NETWORK.

  • A. Grusho   IPI RAN; Department ofMathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, grusho@yandex.ru
  • E. Timonina   IPI RAN, eltimon@yandex.ru

ON THE OPTIMAL CORRECT RECODING OF INTEGER DATA IN RECOGNITION.

  • E. V. Djukova   Institution of Russian Academy of Sciences Dorodnicyn Computing Centre of RAS, edjukova@mail.ru
  • A.V. Sizov   Moscow State University, box.sizov@gmail.com
  • R.M. Sotnezov   Institution of the Russian Academy of Sciences Dorodnicyn Computing Center of RAS, rom.sot@gmail.com

ESTIMATION OF LINEAR MODEL HYPERPARAMETERS FOR NOISE OR CORRELATED FEATURE SELECTION PROBLEM.

  • A.A. Tokmakova   Moscow Institute of Physics and Technology, aleksandra-tok@yandex.ru
  • V. V. Strijov  Computing Center RAS, strijov@ccas.ru

HOLOGRAPHIC CODING BY WALSH-HADAMARD TRANSFORMATION OF RANDOMIZED AND PERMUTED DATA.

  • S. Dolev  Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel, dolev@cs.bgu.ac.il
  • S. Frenkel  IPI RAN; Moscow Institute of Radio, Electronics, and Automation (MIREA), fsergei@mail.ru
  • A. Cohen   Department of Communication Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel, coasaf@cse.bgu.ac.il

MATHEMATICAL FOUNDATION, APPLICATION, AND COMPARISON OF GENERAL DATA ASSIMILATION METHOD BASED ON DIFFUSION APPROXIMATION WITH OTHER DATA ASSIMILATION SCHEMES.

  • K. P. Belyaev  Shirshov Institute of Oceanology, Russian Academy of Science,Moscow, Russia, kb@sail.msk.ru
  • C.A.S. Tanajura   Federal University of Bahia, Salvador, Brazil, cast@ufba.br
  • N. P. Tuchkova   Institution of the Russian Academy of Sciences Dorodnicyn Computing Center of RAS Moscow, Russia, tuchkova@ccas.ru

COMPLETE CONVERGENCE FOR ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES.

  • S.H. Sung  Department of Applied Mathematics, Pai Chai University, Taejon, South Korea, sungsh@pcu.ac.kr
  • K. Budsaba   Center of Excellence in Mathematics, CHE, Bangkok, Thailand; Department of Mathematics and Statistics, Thammasat University Rangsit Center, Pathumthani, Thailand, kamon@mathstat.sci.tu.ac.th
  • A. Volodin   School of Mathematics and Statistics, University of Western Australia, Crawley, Australia; University of Regina, Canada, Andrei.Volodin@uregina.ca

 

RUS